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Abstract—We present a novel semantic approach to modeling
and simulation of nanoelectronic devices. The approach is based
on a finite volume spatial discretization scheme. The scheme
was adapted to accurately treat material anisotropy. It is thus
capable of capturing orientation and strain effects both of which
are prominent in the nanoscale regime. We also demonstrate
the method’s simplicity and power with a three-dimensional
simulation study of a quantum dot using a six band k ·p
Hamiltonian for holes as model.

I. INTRODUCTION

In the rapidly evolving field of nanoelectronics one en-
counters problems that involve multiple interacting physical
systems. One common scenario is that of the electronic system
interacting with optical fields, static electrical and magnetic
fields, lattice vibrations, and others. The electronic system
itself has to be treated quantum mechanically due to the
small length scales and quantum confinement. The other fields
often require to be treated self-consistently with the electronic
system.

When dealing with such problems two challenges arise:
One is the high computational effort usually required for the
analysis of such coupled systems. The expendable computa-
tional effort is limited by the availability and performance of
computational hardware on one hand and by the scalability of
numerical algorithms on the other. The other challenge one
faces is the semantic effort required to numerically model
multliple systems simultaneously. This challenge is addressed
in this work.

II. COMPUTATIONAL METHODS

Most physical laws are laws of conservation. Conservativity,
therefore, serves as a common basis for the numerical mod-
eling in our simulation framework. The finite volume method
(FVM) posesses the inherent property of conservativity and
is therefore well-suited as a common discretization formalism
for all problems ocurring in nanophysical devices.

A. Discretization

Traditional FVM codes are edge-based (see e.g. [1]); here, a
mesh node (i) couples to its neighbors ( j) via the edges of the
mesh graph. Each edge stores a length di j and a coupling area
Ai j, each node stores its Voronoi cell volume Vi, see Fig. 1.
The projection of the field, i.e. the derivative of a quantity
ϕ along an edge, is approximated by (ϕ j − ϕi)/di j. Some
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Fig. 1. Edge-based FVM discretization

material property (permittivity, effective mass, . . . ) relates the
field to a flux density which is multpiplied by Ai j to obtain
the partial flux leaving the cell. This approach has one major
shortcoming: The field obtained by (ϕ j −ϕi)/di j is not the
gradient of ϕ but only its projection along ~ei j which implicitly
assumes that the flux density caused by the field is parallel to
~ei j as well. This restricts the discretization to isotropic media,
i.e. ones with scalar field-flux relations.

Our FVM approach is element-based. Instead of looking
at the neighbor nodes ( j) of node i we look at its neighbor
elements (l). Fig. 2 outlines this. The field is now calculated
inside the element l in its vectorial form. For a simplex
element (a triangle in two dimensions, a tetrahedron in three
dimensions) the approximate gradient of a quantity ϕ is
constant within the element and can be obtained by

[
~∇ϕ

]l
≈ Yl

ϕ j−ϕi
ϕk−ϕi

...

 , Yl := Ul
(
(Ul)T U

)−1
, (1)

where U := [~di j, ~dik, . . .] is a matrix containing the edge
vectors of the element with respect to node i as columns. The
vectorial field may now be multiplied with a second order
tensor to obtain the flux density. The dot product of the flux
density with the coupling area vector ~Ail gives the partial flux
leaving the cell.
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Fig. 2. Element-based FVM discretization
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Fig. 3. The anatomy of an element

B. Assembly

In a realistic mesh the number of elements is several times
greater than the number of nodes. To reduce the number of
times a particular element has to be evaluated when building
the system matrix the assembly is element-centric: A loop
iterates over the elements of the simulated structure and has
the partial fluxes between the element’s vertices evaluated.
These are then added to the appropriate elements of the system
matrix.

This kind of assembly also allows the discretization of the
problem’s constitutive partial differential equations (PDE) to
be broken down on a per-element basis. Continuous oper-
ators and operands can be directly translated into discrete
ones which are represented by matrices. Tab. I shows how
continuous vector-analytic operators (gradient and divergence)
as well as continuous quantities are related to their discrete
per-element representations as matrices. Operand matrices are
diagonal and each diagonal entry corresponds to the operand’s
value at each of the element’s vertices, hence for an n-
dimensional simplex with nv = n + 1 vertices, the element
operands are nv-dimensional diagonal matrices. Operators in
contrast are full matrices; Al is a nv×3 matrix and contains the
area vectors of the coupling surfaces between the element’s
vertices (see Fig. 3) as rows; Zl is a 3× nv matrix and
relates the values at the nodes to the gradient vector within
the element. Second order operators (see Tab. II) and entire
PDEs may be assembled by multiplying the corresponding
matrices. This also allows the assembly of mixed derivatives
such as ∂ 2/∂x∂y which are just a special case of an anisotropic

TABLE I
CONTINUOUS OPERATORS AND OPERANDS WITH THEIR DISCRETE

COUNTERPARTS

Continuous Discrete

Gradient ~∇ Zl =
[
−Yl [1 1 . . .]T , Yl]

Divergence dV div Al = [~Al
i ,

~Al
j, . . .]T

Control volume dV Vl = diag(V l
i , V l

j , . . .)

Scalar quantity q q(~r) ql = diag(qi, q j, . . .)

TABLE II
COMMON ELEMENTS OF PDES IN THEIR DISCRETIZED FORM

Continuous Discrete

Laplacian dV ∇2 AlZl

Anisotropic Laplacian dV~∇ · τ˜ ·~∇ Alτ lZl

First order derivative dV~ek ·~∇ Vl(~ek[1 1 . . .])T Zl

Laplacian with τ˜ = ~ex ⊗~ey. A per-element nv × nv matrix
obtained by a combination of the aforementioned matrices has
its entries added to the appropriate entries in the system matrix,
denoted by the global indices of the element’s vertices.

Note that the number of columns in Al and rows in Zl is
three regardless of the dimensionality of the elements (lines,
triangles, or tetrahedra) meaning that models always operate
in three-dimensional real space even if the simulation domain
is one-dimensional. This has several benefits:
• It is useful when describing the influence of transversal

asymetries, e.g. transversal electromagnetic field in a one-
dimensional device.

• Tensors operating on three-dimensional vectors can be
used in lower-dimensional models to conveniently express
effects of substrate rotation.

• Mixed-dimensionality problems are possible, e.g. a gra-
phene layer on a substrate, where carrier transport is
two-dimensional but the electrostatics need a full three-
dimensional treatment due to the influence of the sub-
strate.

III. RESULTS AND DISCUSSION

The implementation of the presented scheme was realized
within the Vienna Schrödinger-Poisson simulation framework
(VSP) [2]. As an illustrative study for the method and its
implementation we have chosen the problem of calculating the
quantized hole states in a silicon quantum dot. From a six band
k ·p Hamiltonian the effective Hamiltonian for the quantum
dot is obtained from which the quantized hole structure is
calculated. The model Hamiltonian contains strong anisotropy
as well as mixed derivatives which makes the model suitable
as a test case for our simulation framework.

A. The Model Hamiltonian

The model Hamiltonian reads [3]

H6×6 = H3×3⊗
[

1 0
0 1

]
+Hso (2)
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with

H3×3 =

Lk2
x +Mk2

y,z Nkxky Nkxkz

Nkxky Lk2
y +Mk2

x,z Nkykz

Nkxkz Nkykz Lk2
z +Mk2

x,y

 (3)

and

Hso =−Eso

3

 0 σxσy σxσz
σyσx 0 σyσz
σzσx σzσy 0

 . (4)

The three-band paramters in (3) are L = −6.53, M = −4.64,
and N =−8.75 in units of h̄2/2me [4]; the split off energy Eso
is 44 meV [5]. σξ are the Pauli spin matrices.

By replacing ~k = kx~ex + ky~ey + kz~ez with −i~∇ one obtains
the real space representation of the Hamiltonian. The real
space representation is discretized in the following step. The
eigenenergies and states of the dot are obtained by numerically
solving the algebraic eigenvalue problem arising from the
discretization and assembly procedure.

B. Meshing, Discretization, and Numerics

The simulated structure is a silicon quantum dot embedded
in a SiO2/Si3N4 matrix, a structure commonly found in pho-
toluminescence experiments [6]. The dot has the geometric
shape of a rhombicuboctahedron and measures 5 nm along its
〈100〉 axes. Its outline can be seen in Fig. 5. The structure was
meshed using TetGen, a three-dimensional tetrahedral mesh
generator [7]. The generated mesh was completely irregular
and contained a few ten thousands of points. The irregularity of
the mesh breaks the otherwise octahedral symmetry of the dot.
This has the effect that states, which are perfectly degenerate
in the continuum picture due to symmetry and would be also
numerically degenerate if an orthoproduct grid was used, have
their energies split slightly. The splitting was however found to
be very low in our example (rel. err. ≈ 10−5). Thus the states
can be considered quasi-degenerate. The mesh also contained
about one percent of “bad tetrahedra”, i.e. tetrahedra with ill-
scaled aspect ratios. Some of these tetrahedra cause the matrix
of the per-element Lapacian Ll = AlZl to become indefinite
which in turn causes non-vanishing (but small) imaginary parts
in some of the system matrix eigenvalues.

The discretization of the Hamiltonian results in a straightfor-
ward translation of operators according to Tab. II. The diagonal
elements of (3) are discretized analogous to

Lk2
x +Mk2

y,z 7→−~∇ ·
[

L
M

M

]
·~∇ 7→−Al

[
L

M
M

]
Zl , (5)

and the off-diagonal ones analogous to

Nkxky 7→ −
1
2
~∇ ·
[

N
N

]
·~∇ 7→ −1

2
Al
[

N
N

]
Zl . (6)

Closed (Dirichlet) boundary conditions were applied.
To save computational effort, only the three band Hamil-

tonian H3×3 was discretized and its eigenenergies and states
were computed as a first step, thus excluding the effect of spin-
orbit coupling. This part of calculation was done efficiently
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Fig. 4. Quantum dot energies with (×) and without (+) spin-orbit coupling;
most states are six fold (quasi-)degenerate; spin-orbit coupling breaks the six
fold degeneracies into two and four fold ones

using the implicitly restarted Arnoldi method (IRAM) pro-
vided by ARPACK [8]. We exploited the sparsity of the system
matrix in the matrix-vector multiplications and only a few
physically relevant eigenpairs were computed. In the second
step, the six band Hamiltonian was expanded using the H3×3
states from the previous step as basis. The resulting dense (but
small) eigenvalue problem was solved using direct methods
(LAPACK [9]). Spin-orbit coupling mainly causes splitting
among (quasi-)degenerate states. The expansion therefore
gives a good approximation even for a very small set of basis
states.

C. Numerical Results

Fig. 4 shows the eigenenergies of the simulated quantum
dot. Most of the states are (quasi-)degenerate due to the
symmetric structure geometry. The most common degeneracy
multiplicity is six which corresponds to the number of bands
(three) times spin polarizations (two). Multiplicities other than
six are due to non-parabolicity effects. Spin-orbit coupling
partially lifts the six fold degeneracies and breaks them into
doublets and quadruplets.

Fig. 5 shows the densities corresponding to each cluster
of degenerate states. The density distributions develop very
unusual shapes due to the non-parabolicity of the Hamiltonian.
The densities are almost unaffected by spin-orbit coupling;
the densities with and without spin-orbit coupling are visually
indistinguishable.

IV. CONCLUSIONS

A finite volume discretization method for the simulation
of nanoelectronic devices was presented. The method’s capa-
bilities were demonstrated using a three-dimensional analysis
of the closed boundary k ·p Schrödinger equation. Similar
work was done in [10] using finite differences and in [11]
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(d) (e) (f)
Fig. 5. Contours of densities corresponding to quantized hole states in a silicon quantum dot; densities of (quasi-)degenerate states are summed in this figure;
(a) states 0 through 5, (b) states 6 through 11, (c) states 12 through 15, (d) states 16 through 21, (e) states 22 through 27, (f) states 28 and 29

using finite elements. To our knowledge, this is the first im-
plementation of a k ·p Schrödinger solver using finite volumes
and a three-dimensional irregular mesh. Finite volumes are a
widespread approach in device simulation due to the physical
basis of the discretization scheme (laws of conservation).
This allows a consistent integration of classical and advanced
nanodevice simulation, where the inclusion of anisotropy and
strain and orientation effects opens new opportunities in the
device design and engineering process.
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