First Principles Study on the Switching Mechanism in
Resistance Random Access Memory Devices

Hideaki Kasai, Susan Meñez Aspera, Hirofumi Kishi
Graduate School of Engineering, Osaka University
Precision Science & Technology and Applied Physics
Osaka, Japan
kasai@dyn.ap.eng.osaka-u.ac.jp

Nobuyoshi Awaya, Shigeo Ohnishi, Yukio Tamai
Sharp Corporation
Corporate Research and Development Group
Hiroshima, Japan

Abstract—The role of Resistance Random Access Memory (RRAM) is recently becoming extremely important in the field of
developing non-volatile memory devices. The foreseen relevance of
RRAM in this field is attributed to the switching of the
electronic properties from metal to insulator, and vice versa, of
the transition metal oxides (TMOs) included in RRAM by a set
and reset pulse voltage. However, conclusive clarifications on the
switching mechanism have not yet been fully realized. In this
study, by using first principles calculation based on density
fuctional theory, we investigated RRAM’s switching mechanism
through analysis of the change in the electronic properties of the
bulk TMOs resulting from oxygen vacancies and charge carrier
trapping for two known TMOs materials used in RRAM, HfO$_2$
and CoO. We found that an oxygen vacancy row with charge
carrier trapping creates a conduction path and therefore the
transition from insulator to metal. In addition, we perform
calculations for slab models of the TMOs in contact with Ta
electrodes and hence investigate the effects of oxygen vacancies at
the interface between the TMO layers and the electrode layer.
From the obtained results, we confirmed that our investigations
on activation energy barrier for oxygen vacancy migration are
consistent with the experimental data of voltages required for
switching.

RRAM, TMO, First Principles Study

I. INTRODUCTION

Technological advancement in materials design is
apparently geared towards the development of materials for
devices that are miniature, perform intended function faster,
productively cost efficient, and can be operated with low
power. In the development of non-volatile memories,
Resistance Random Access Memory (RRAM) [1-8] is seen to
be very promising in the field of developing non-volatile
memory devices. Transition metal oxides (TMOs) included in
RRAM switch their properties between insulator and metal.
This switching mechanism of RRAM has been recently
becoming one of the extremely important subject in the field of
developing non-volatile memory devices. Transition metal oxides (TMOs) included in
RRAM switch their properties between insulator and metal.
This switching mechanism of RRAM has been recently

Some studies related to RRAM suggest that the creation
of a conduction path on TMOs, through defect formation,
framework of GGA+U and the simplified (rotationally invariant) approach by Dudarev et al. [29] The Coulomb repulsion \(U = 7 \text{eV} \) and the local exchange interaction \(J = 1 \text{eV} \) are applied to correct the band gap of CoO. The Coulomb repulsion \(U = 7.5 \text{eV} \) and the local exchange interaction \(J = 1 \text{eV} \) are applied to correct the band gap of HfO\(_2\). The GGA+U calculations of electronic density of states of CoO and HfO\(_2\) lead to the energy gap of 2.5\(\text{eV} \) [30, 31] and 5.8\(\text{eV} \) [32], respectively.

III. RESULTS AND DISCUSSION

The switching mechanism of RRAM basically relies on the transition between the insulator to metal property of the TMO films sandwiched by the two metallic electrodes in capacitor-like RRAM devices. In this paper, we presume that this switching mechanism is attributed to the formation of an oxygen vacancy row and the occurrence of charge carrier trapping along the oxygen vacancy row of the TMO films. Investigations were done on two known metal oxide systems used in RRAM devices, CoO and HfO\(_2\). We investigate the properties of bulk CoO and HfO\(_2\) without oxygen vacancy, with the oxygen vacancy row and with the oxygen vacancy row and charge carrier trapping. The resulting band structures are shown in Figs. 3, 4 and 5. Fig. 3 confirms the insulator properties of the bulk CoO and HfO\(_2\) without oxygen vacancy through the appearance of large bandgap around the Fermi level. On the other hand, the resulting band structures for the bulk CoO and HfO\(_2\) with the oxygen vacancy rows, as shown in Fig. 4, show decrease of bandgap. Finally, we investigate the properties of bulk CoO and HfO\(_2\) with the oxygen vacancy rows and by adding an extra electron per unit cell as a reference of the charge carrier trapping, as shown in Fig. 5. From this, we confirm the electrical conductivity of the bulk CoO and HfO\(_2\) through the appearance of bands crossing with the Fermi level [33]. In addition, the electron density distributions along these bands, as shown in Fig. 6, represent that the presence of the oxygen vacancy rows and charge carrier trapping creates conduction paths around the vicinity of the oxygen vacancy rows that affect the electrical conductivity of the bulk CoO. Discontinuity within the aforementioned oxygen vacancy row changes the properties of the bulk CoO and HfO\(_2\) back to insulator through the disappearance of bands that cross with the Fermi level.

Through these, we consider that it is of utmost necessity to investigate oxygen vacancy migration which has an important role in the switching mechanism of RRAM in relation to the required oxygen vacancy row for the creation of the conduction path. Some studies related to RRAM suggest that the transition from insulator to metal is due to oxygen vacancy migration around the interface between electrode and
TMO [34]. We therefore use the system of the CoO slab and the HfO2 slab in contact with Ta electrodes [15] using the model represented in Fig. 2. The resulting density of states for each layer of the CoO slab and the HfO2 slab are shown in Figs. 7 and 8, respectively.

From these figures we find that the interface layers of CoO (the first layer) and HfO2 (the first and the second layers) have properties of metal and the lower layers have properties of insulator. From these, we assume that the creation of a conduction path through the formation of the oxygen vacancy row is via migration of oxygen vacancy from the interface to the lower layers. This switching mechanism is represented in Fig. 9. The insulating system (high resistance state) of RRAM is represented in Fig. 9 (a). In this case, an oxygen atom interrupts the conduction path between interface and lower layers which makes the system insulating. From this insulating system, an oxygen atom migrates to the interface layers through an application of a sufficient amount of set pulse voltage, which therefore makes the oxygen vacancy migrate to the lower layers thus converting the system to metallic [34]. The metallic system (low resistance state) of RRAM is represented in Fig. 9 (b). The oxygen vacancy connects the conduction path between interface and lower layers, and creates electrical conductivity within lower layers of CoO and HfO2. A reset pulse voltage reverses the direction of the oxygen atom migration from the interface layers to the lower layers, thus migrating the oxygen vacancy from the lower layers to the interface layers which switches back the system to the insulating system.

These set and reset pulse voltages applied to the Ta/CoO/Pt and Ta/HfO2/TiN system are investigated experimentally. Results shown in Table I represent that a low reset pulse voltage is needed to switch the system from a low resistance state to a high resistance state whereas a higher set pulse voltage is needed to convert the system from a high resistance state to a low resistance state. These results are compared with the activation energy barriers for oxygen vacancy migration around the interface between electrodes and TMOs (CoO and HfO2), which are mentioned before as essential part of the switching mechanism in the TMOs. We use Climbing Image Nudged Elastic Band (CI-NEB) [35] method with 5 images of transition states to determine the most effective path for oxygen vacancy migration, and hence the activation energy barriers, for positions near the electrode-bulk TMO interface of the Ta/CoO and Ta/HfO2 systems. The corresponding activation energy barriers are shown in Table II. Generally, we see that the barrier for conversion from a metallic system (low resistance state) to an insulating system (high resistance state) is less than the barrier for converting it vice versa. This is attributed to the fact that TMO is more stably occurring as an insulator than a material with metallic property. It is therefore easier to switch the system from a metal to an insulator than the other way around. These results are consistent with the results obtained from experimental analysis wherein reset pulse voltage is lower than set pulse voltage. This therefore supports the previously proposed mechanism of switching involving oxygen vacancy migration as the main component of the switching.
IV. CONCLUSION

This paper has therefore clarified some properties of TMO resulting from oxygen vacancies and charge carrier trapping around the oxygen vacancies for clarification of the switching mechanism in RRAM devices. We find that an oxygen vacancy row and charge carrier trapping create a conduction path, which therefore makes the transition from insulator to metal. The switching mechanism is mainly attributed to the oxygen vacancy migration near the interface of the electrode-TMO layers triggered by the application of a set and reset pulse voltage.

ACKNOWLEDGMENT

This work is supported by the New Energy and Industrial Technology Development Organization's (NEDO) through the project entitled, 'Research and development of transition-metal oxides and its nanofabrication processes for ultra-high-density non-volatile memory'. Some of the calculations presented here are performed using the computer facilities of the Institute of Solid State Physics (ISSP) Super Computer Center (University of Tokyo) and the Cybermedia Center (Osaka University). The authors also acknowledge Dr. Wilson Agerico Diño, Dr. Hiroshi Nakanishi and Dr. Sumio Terakawa for fruitful discussions.

REFERENCES

