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Abstract—Going beyond the existing semiclassical approach
to calculate band-to-band tunneling (BTBT) current we have
developed a quantum mechanical model incorporating confine-
ment effects and multiple electron and hole valleys to calculate
the tunnel current in a tunnel field-effect transistor. Comparison
with existing semiclassical models reveals a big shift in the onset
of tunneling due to energy quantization. We show that the big
shift due to quantum confinement is slightly reduced by taking
penetration into the gate dielectric into account. We further
propose a modified semiclassical model capable of accounting
for quantum confinement.

I. INTRODUCTION

On the one hand, nanosized MOSFETs suffer from gate-
induced drain leakage (GIDL) which deteriorate their off-
current [1]. On the other hand, tunnel field-effect transistors
(TFETs) are considered potential candidates to overcome the
limit of the 60 mV/decade subthreshold swing in a MOSFET
operating at room temperature [2]. In both instances the
Band-to-Band tunneling (BTBT) process is responsible for the
tunneling current as illustrated in Fig. 1. An accurate theory
of BTBT is therefore highly desirable.

The calculation of BTBT current is traditionally based on
semiclassical models using band diagrams inside the device
[3], [4]. An electron tunneling from valence to conduction
band is mimicked as a classical particle disappearing at the
valence band edge and reappearing at the conduction band
edge, as shown in Fig. 2. Correspondingly, the tunnel current
equals the integral of a tunnel generation rate 𝐺 over the entire
device,

𝐼semiclassical = 𝑞

∫
𝐺d𝑉 (1)

where 𝐺 can be obtained from Kane’s model for direct [5] or
indirect semiconductors [6]–[8].

To compare semiclassical results with quantum mechanical
results, we study a TFET device with a large gate-source
overlap as shown in Fig. 3. The potential can be taken to
vary only in the direction perpendicular to the semiconductor-
dielectric interface (𝑧 direction) [9] facilitating modeling and
interpretation. In this paper, we treat tunneling in an indirect
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Fig. 1. Picture of GIDL/TFET working principle showing hole and electron
generation due to BTBT
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Fig. 2. Semiclassical picture of band-to-band tunneling

semiconductor and make a quantum mechanical calculation
of the so-called line tunneling current component, which is
proportional to the gate-source overlap. In section II, we
outline the quantum mechanical framework to calculate current
similar to [8] but now also including penetration into the gate
dielectric. In section III, we propose a modification of existing
semiclassical models to account for quantum confinement and
discuss some further limitations of the semiclassical models.

II. QUANTUM MECHANICAL MODELING OF BTBT

To obtain a quantum mechanical estimate of the BTBT in
indirect semiconductors, we use the method outlined in [10].
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Fig. 3. Illustration of a TFET with the gate over the source, arrows indicate
tunneling
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First, the conduction and valence band electron wavefunctions
have to be determined. Adopting the effective mass approxi-
mation for both carrier types, the Schrödinger equations read:(

𝐸0v(c) ± ℎ̄2

2

(
∇ ⋅
[
𝑚∗

v(c)𝛼

]−1

∇
)
+ 𝑈ext(𝑧)

)
𝜒v(c)𝛼;ℓ(r)

= 𝐸v(c)𝛼;ℓ𝜒v(c)𝛼;ℓ(r). (2)

We consider all six [100] oriented conduction band valleys as
well as the three valence band valleys. Solving the Schrödinger
equation results in a complete set of wavefunctions 𝜒v(c)𝛼;ℓ(r)
and the corresponding energy eigenvalues 𝐸v(c)𝛼;ℓ where ℓ
denotes the set of quantum numbers and 𝛼 is the valley index.

Defining the spectral functions as

𝐴v(c)𝛼(r, r
′;𝐸) =

2𝜋
∑
ℓ

𝜒v(c)𝛼;ℓ(r) 𝛿(𝐸 − 𝐸v(c)𝛼;ℓ)𝜒
∗
v(c)𝛼;ℓ(r

′), (3)

the different contributions to the charge density are determined
by weighing the spectral functions with the Fermi-Dirac dis-
tribution functions 𝑓v(c)(𝐸) = 1/(1+exp((𝐸−𝜇v(c))/(𝑘𝑇 )):

𝜌net(𝑧) = −𝑞𝑁a+2𝑞

∫
d𝐸

2𝜋

(
(1−𝑓v(𝐸))

∑
𝛼

𝐴v𝛼(𝑧, 𝑧;𝐸)

− 𝑓c(𝐸)
∑
𝛼

𝐴c𝛼(𝑧, 𝑧;𝐸)
)

(4)

with 𝑁a the doping concentration. The potential energy
𝑈ext(𝑧) reflecting all bias voltages can be determined by
solving the 1D-Poisson equation self-consistently with the
wavefunctions.

Taking the interaction with the phonons into account, we
compute the phonon-assisted current from

𝐼 = −2𝑒

ℎ̄

∫
d𝐸

2𝜋

((
𝑓v(𝐸)(1− 𝑓c(𝐸− ℎ̄𝜔k0

))(𝜈(ℎ̄𝜔k0
)+1)

− 𝑓c(𝐸 − ℎ̄𝜔k0
)(1− 𝑓v(𝐸))𝜈(ℎ̄𝜔k0

)
)
𝑇 em
v (𝐸)

+
(
𝑓v(𝐸)(1− 𝑓c(𝐸 + ℎ̄𝜔k0

))𝜈(ℎ̄𝜔k0
)

− 𝑓c(𝐸 + ℎ̄𝜔k0
)(1− 𝑓v(𝐸))(𝜈(ℎ̄𝜔k0

) + 1)
)
𝑇 abs
v (𝐸)

)
(5)

with

𝑇 abs,em
v (𝐸) = Ω ∣𝑀 ′

k0
∣2

×
∑
𝛼,𝛼′

∫
d3𝑟 𝐴v𝛼(r, r;𝐸)𝐴c𝛼′(r, r;𝐸 ± ℎ̄𝜔k0

). (6)

At the gate dielectric (𝑧 = 0), a boundary condition for
the wavefunctions is required. A first approximation is to use
Dirichlet boundary conditions: 𝜒(0) = 0 [8]. This corresponds
to modeling the gate dielectric as a hard wall potential that
strictly confines the electrons to the device region.

However, real devices are found to suffer from wavefunction
penetration into the dielectric. In general the penetration leads
to an unwanted gate leakage current but for the field induced
quantum confinement, the penetration of the gate dielectric
will make the impact of confinement slightly less pronounced.

To account for penetration into the dielectric, we assume
the dielectric is infinitely thick and that the wavefunction
decays with a given decay length 𝑙dec inside the dielectric,
i.e. 𝜒(𝑧) ∝ exp(𝑧/𝑙dec) for 𝑧 < 0. The boundary condition
for the wavefunction is now:

d𝜒(𝑧)

d𝑧

∣∣∣∣
𝑧=0

=
𝜒(0)

𝑙dec
. (7)

The value of 𝑙dec can be determined from the complex band
structure and is about 3 Å for HfO2 [11].

In Fig. 4, the quantum mechanical current is compared
with the semiclassical current for two different doping con-
centrations. The big onset shift between the semiclassical and
the quantum mechanical calculation is due to the quantum
confinement of the electrons near the interface. The shift is
bigger for the device with the larger doping concentration as
larger fields and stronger carrier confinement is present. The
two different effective masses (transversal and longitudinal)
in the 𝑧 direction give rise to different energy levels, the
signatures of which can be clearly observed as a cusp in the
current-voltage characteristic for the TFET with high doping
concentration. The shift due to confinement can be seen to be
smaller when the penetration into the gate dielectric is taken
into account.

III. SEMICLASSICAL MODELS

In this section we propose a modification to the semiclas-
sical model to account for quantum confinement.

A. The existing semiclassical model

The semiclassical model we have used for our comparison
in Fig. 4 is similar to that used in Ref. [10] and defines two
tunnel paths starting at the valence band and ending at the
conduction band: one corresponding to a path bridging a gap
𝐸g + ℎ̄𝜔k0

and the other bridging a gap 𝐸g − ℎ̄𝜔k0
. The first

path corresponds either to an electron going from valence to
conduction band emitting a phonon or an electron going in the
other direction absorbing a phonon. The second path describes
the dual processes.

Based on the tunnel path start point (𝑧 = 𝑧1) and end point
(𝑧 = 𝑧2), illustrated in Fig. 5, the path length (𝑙tun = 𝑧2− 𝑧1)
is determined and a generation rate is calculated according to
the average force 𝐹 = (𝑈ext(𝑧2) − 𝑈ext(𝑧1))/𝑙tun along the
tunnel path. To have a fair comparison between the quantum
mechanical and the semiclassical model we have taken the
same parameters for the electron-phonon interaction strength,
effective masses and bandgap and substituted them in the
indirect Kane model [7], [10]. Only the tunneling of the
light holes to the electrons with their transversal mass in the
tunneling direction has been taken into account as this process
dominates over the other tunneling processes.

B. Modified semiclassical model

As observed in Fig. 4, the major discrepancy between the
semiclassical and the quantum mechanical input characteristics
is the big shift in onset voltage due to the absence of states
to tunnel into due to quantum confinement. Based on this
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Fig. 4. Comparison of full quantum mechanical current with semiclassical
current for source doping 𝑁a = 1020 cm−3 (top) and 𝑁a = 1019 cm−3

(bottom) revealing the big shift due to quantum confinement for the hard
wall condition and taking penetration into the gate dielectric into account.
Lower doping results in a reduced effect of quantum confinement. Additional
parameters used for the calculation are given in the Appendix.

observation we propose a modified semiclassical model which
proceeds as follows: 1) start a tunnel path at an initial position
𝑧1 in the valence band, 2) determine the location of the
intersection of the tunnel path with the conduction band 𝑧2,
3) determine the depth of the conduction band well at the
intersection with the dielectric interface Δ𝐸c, 4) determine a
minimum well depth Δ𝐸min,c required to accomodate a parti-
cle, 5) if Δ𝐸c > Δ𝐸min,c calculate generation rate in normal
fashion, otherwise reject the tunnel path. An illustration of an
accepted and a rejected path is given in Fig. 5.

To estimate the minimal well depth required to accomodate
a particle, calculate the energy level of the first state in the
triangular well approximation

𝐸0c = −𝑎0

(
ℎ̄2 (𝐹 (𝑧2))

2

2𝑚∗
c,𝑧

)1/3

(8)

with 𝑎0 ≈ −2.3381 the first zero of the Airy function, 𝑚∗
c,𝑧

z1z2

z1z2

ΔEmin,c

Ev

Ec ± h̄ωk0

ΔEc

ΔEc

Fig. 5. Illustration of how a semiclassical path starting at 𝑧1 going to 𝑧2
is defined. For the modified semiclassical model the well depth Δ𝐸c at the
interface has to be determined. Tunneling either proceeds in the normal fashion
if Δ𝐸c > Δ𝐸min,c (solid path) or the tunnel path is rejected Δ𝐸c ≤
Δ𝐸min,c (dashed path).

is the effective mass in the 𝑧-direction and where

𝐹 (𝑥2) = − d

d𝑧
𝑈ext(𝑧)

∣∣∣∣
𝑧=𝑧2

(9)

is the force on the electron at 𝑧 = 𝑧2. In the modified
semiclassical picture, the penetration into the gate dielectric
can be taken into account by reducing 𝐸0c by the energy the
electron is expected to gain over the distance of the decay
length:

Δ𝐸min,c = 𝐸0c − 𝐹 (𝑥2)𝑙dec. (10)

We have implemented the modified semiclassical model
outlined above and compared it with the previously calculated
current-voltage characteristics and show the result in Fig. 6.
One more change that was made in the modified semiclassical
model shown in Fig. 6 is that tunneling of both the transversal
and the longitudinal electrons was taken into account. The
tunneling probability is much lower for the longitudinal elec-
trons but due to reduced impact of quantum confinement, their
contribution is now also important. The modified semiclassical
model manages to capture the effect of the quantum confine-
ment and gives reasonably good agreement with the quantum
mechanical result.

In our case we have studied a 𝑛TFET where the conduction
band electrons are confined. In case confinement is present for
the valence band electrons, it must be verified if the well for
the valence band electrons is deep enough.

C. Further limitations to the semiclassical model

We have shown that semiclassical models can be adapted to
incorporate field induced quantum confinement. Nevertheless,
we believe it is important to remind the reader that there are
still some other unsolved issues with the use of semiclassical
models we have not discussed in this paper.

First of all, in a two-dimensional potential profile, tunnel
paths are chosen in the device according to straight lines [12],
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Fig. 6. Full quantum mechanical current and the existing semiclassical cur-
rent for source doping 𝑁a = 1020 at/cm−3 (top) and 𝑁a = 1020 at/cm−3

(bottom) as given in Fig. 4 compared with the modified semiclassical model.
Wavefunction penetration is taken into account.

along the electric field lines [13] or along Newtonian trajec-
tories [14]. For a potential with pronounced two-dimensional
features, none of these methods can be justified on theoretical
grounds and certainly not for the case of phonon-assisted
tunneling where the interaction with the phonon has to be
accounted for.

Secondly, the electron/hole generation is assumed to take
place at the edge of the conduction and valence band when
introduced in the drift-diffusion equations. Again no theoreti-
cal framework on how the generation should be incorporated
is available.

IV. CONCLUSION

In a semiconductor device with high electric fields near
the gate-dielectric, taking quantum confinement effects into
account when calculating BTBT is paramount and existing
semiclassical models fail. Penetration of the wavefunction into
the gate dielectric slightly reduces the quantum confinement
effect compared to semiclassical results. We have also demon-
strated a modified semiclassical model which amounts to a

small correction of the existing models and which is capable
of capturing the effect of field-induced quantum confinement.
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APPENDIX

Parameters used:
Bandgap: 1.12 eV
Effective masses: 𝑚c,l = 0.9163 𝑚0, 𝑚c,t = 0.1905 𝑚0,
𝑚v,lh = 0.16 𝑚0 and 𝑚v,hh = 0.490 𝑚0

Dielectric constants: 𝜖s = 11.5𝜖0 and 𝜖ox = 15𝜖0
Oxide thickness and gate length: 𝑡ox = 2 nm and 𝐿 = 30 nm
Electron-phonon parameters: ℎ̄𝜔k0

= 18.4 meV, Ω∣𝑀 ′
k0
∣2 =

4.8634× 10−31 eV2 m3
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