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Abstract—A unified analytical expression is developed to 
accurately describe the complex band structures in commonly 
used diamond and zinc-blende semiconductors. Fitting the model 
to the numerical complex band structures shows a significantly 
improved accuracy as compared with the effective mass 
approximation. The model is used to study the band-to-band 
tunneling in Si, Ge, GaAs and GaSb, with a maximum error of 
<1.4% compared to the numerical band structures. 
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I.  INTRODUCTION 
Accurate modeling of band-to-band tunneling (BtBT) 

current is critical for the design of both high-performance 
nano-scale MOSFETs with low Ioff and energy-efficient 
tunneling transistors (TFET) with high Ion. Theoretically, an 
electron travels in an evanescent decaying mode when it 
tunnels through a forbidden gap, featuring a complex wave 
vector along the tunneling direction. The knowledge of these 
evanescent modes (i.e., complex band structure) therefore 
forms the basis of BtBT analysis, either in the construction of 
Green’s-function-based numerical simulator [1] or in the 
derivation of action-integral-based analytical models [2]. 
Despite various numerical methods developed in the past 
decades [1,3-5], a unified analytical expression which provides 
quick and accurate access to the complex band structure of 
common semiconductors is highly attractive to both continuity-
equation-based device simulator [6] and compact models. In 
this work, such analytical model is developed and calibrated, 
which captures both the direct and indirect tunneling modes 
along various directions of common semiconducting materials. 
With a maximum error of <1.4%, the model shows a 
significant improvement over the effective mass 
approximation. 

II. MODELING APPROACH 

A. Crystal Coordinates and Device Coordinates 
The band-to-band tunneling direction is along the electric 

field, which may not necessarily be aligned with the principal 
axes (e.g., [100], [010] and [001]) defined in a bulk crystal. 
Since the imaginary wave number is defined only along the 
tunneling direction, transforming it into the crystal coordinate 

system may result in more than one complex component. To 
facilitate the discussion and representation of the complex band 
structures, it is preferable to show the E-k dispersion relations 
in a coordinate system in which only one directional 
component of the wave vector is complex. Therefore besides 
the normal crystal coordinate system in which a wave vector is 
decomposed among the (x, y, z) directions, we introduce a 
device coordinate system in which a wave vector is 
decomposed among the tunneling direction, as denoted by ┴, 
and the directions perpendicular to the tunneling, as denoted by 
//. Within this device coordinate system, the electron 
momentum perpendicular to the tunneling direction are 
conserved, with the components of wave vectors to be real. The 
3D wave vector therefore takes the form of ( )1 2

/ / / /, ,k i k kκ⊥ ⊥+ , 
where 1 2

/ / / /, , , andk k kκ⊥ ⊥  are real numbers. Transformation 
between the two coordinate systems can be achieved by the 
rotation of axes, which is characterized by a 3-by-3 matrix 
relating ( ), ,x y zk k k  and ( )1 2

/ / / /, ,k i k kκ⊥ ⊥+ . 

B. Analytical Approximations of Complex Band Structures 
Detailed derivation of our analytical forms and its 

implications are described elsewhere in [7], in which a non-
parabolic two-band k pi model is generalized to the case where 
electrons and holes have different effective masses. The results 
are summarized by (1) for the direct complex branch at Γ and 
(2) for the indirect complex branch stemming from an indirect 
valley α.  
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In (1) and (2), κ  is the imaginary part of the component of 
the wave vector along the tunneling direction ( ⊥ ). mc (mv) is 
the electron (hole) effective mass at the conduction band 
minimum (valence band maximum) at Γ. mcα is the electron 
effective mass at the indirect conduction band valley labeled α 
(α being L for Ge and Δ for Si.). All the effective masses are 
along the tunneling direction. The energy reference is set at the 
top of the valence band at Γ. gE Γ is the conduction band 
minimum at Γ, or the direct gap of the real band structure. cE α  
is the indirect conduction band minimum at α, or the indirect 
gap of  the real band structure. Eα  is the energy difference 
between the conduction band minimum at α, where the indirect 
complex branch starts, and the state in the valence band where 
the same complex branch ends. Eq. (2) only describes the 
conduction branch of the complex band at α, because the 
valence branch for which c qE E E Eα α α< − + is usually far 
from the band gap region and therefore does not affect the 
indirect BtBT. Note that for the indirect complex branch 
described by (2), the wave vector may also have a real 
component along ⊥ , depending on the value of k⊥ at α (see 
for example, Fig. 4). This real component is irrelevant in the 
calculation of the action integral in (3) and therefore not 
described.  

Both (1) and (2) are elliptic and analytically integrable, 
with effective masses mc, mv, mcα and energy Eqα treated as 
fitting parameters. The direct bandgap at Γ (EgΓ), the indirect 
band gap at the conduction valley α (Ecα), and the energy range 
of the complex branch stemming from the valley (Eα) are fixed 
constants for a given material. 

For direct tunneling at Γ, the wave number is purely 
imaginary and (1) is used to fit its imaginary part in the band 
gap.  For indirect (i.e., phonon assisted) tunneling from Γ to the 
lowest conduction valley, the valence branch of the complex 
band stemming from Γ is given by Eq. (1), while the imaginary 
part of the conduction branch stemming from the valley is 
given by Eq. (2).  

In the case when 0E → (or 
gE E→ ), the 2nd-order term of 

E (or 
gE E− ) can be neglected. Equation (1) therefore reverts 

to the conventional parabolic approximation. Similar 
asymptotic behavior is found in (2) when cE E α→ . 
κΓ⊥ approaches its maximum when 

qE E Γ→ . The conduction 
branch and the valence branch of the complex band are 
connected smoothly at this point, revealing the inherent elliptic 
nature of the complex band.   

C. Numercial Band Structures and Fitting Method 
To fit the parameters in (1) and (2), the sp3d5s* tight-

binding model [8-10] and a zone unfolding technique [11] are 
used to numerically generate complex band structures of 
semiconductors along selected orientations [5]. For each 
orientation, the most relevant complex branches are selected as 
fitting target according to the position and shape of the 
conduction band valleys. Fitting errors are estimated by the 
difference of calculated wave vectors at all energy levels of 

interest. A genetic algorithm [12] is invoked to minimize the 
error and fit the parameters. 

III. RESULTS AND DISCUSSIONS 

A. Numerical Results of Complex Band Structures 
The numerically calculated complex band structures along 

[100] of bulk Si and Ge are shown in Fig. 1. While the black 
curves are the real band structures corresponding to the 
propagating modes in the crystal, the red curves with imaginary 
wave vectors correspond to the decaying (tunneling) modes 
along the tunneling direction. Theoretical analysis shows that 
in both direct and indirect BtBT, the inverse of the inter-band 
tunneling probability (T) depends exponentially on the area of 
the region enclosed by the imaginary branch connecting the 
two real bands [13]-[15]. With the Wentzel-Kramers-Brillouin 
(WKB) approximation, this is described by [15] 
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where x1 and x2 are the classic turning points at which 0κ = . 
gE Γ ( cE α ) is the conduction band minimum at Γ ( α ). 

According to this dependence, it is observed that the major  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Complex band structures along [100] for bulk Si and Ge. 
While black curves are the normal band structure, the red curves 
correspond to the inter-band tunneling modes (i.e., complex band 
structures) along [100]. The indirect (phonon-assisted) tunneling 
dominates in the case of Si, while a direct tunneling path cannot be 
neglected for Ge. 

Si [100] 

Direct tunneling 

Ge [100] 
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BtBT mechanism in Si is the phonon-assisted indirect 
tunneling, while in Ge, due to the small direct gap at Γ, direct 
tunneling may take over the indirect tunneling and become the 
dominant mechanism under strong bias conditions. Similar 
observation has also been obtained from a numerical 
simulation using the non-equilibrium Green’s function method 
[2]. With this observation and the exponential dependence by 
(3), it is concluded that the complex branches near the band 
gap region are the critical part of the entire band structures to 
BtBT which needs to be described with sufficient accuracy. 
Further investigation of these  complex energy branches in 
different semiconductors reveals the fact that they are all close 
to the elliptic relation implied by a simple two-band model 
[7][13]. This opens up the possibility to use the analytical 
model in (1) and (2) as a reasonable approximation to the 
complex energy branches. 

B. Parabolic and Non-Parabolic  Approximations 
Fig. 2 compares the parabolic model and our non-parabolic 

model for the direct and indirect tunneling trajectories in Ge. 
While our elliptic model agrees with the numerical results well, 
the parabolic approximation used by the effective mass 
approach overestimates the action integral by 20% for direct 
and 30% for indirect tunneling, which, when substituted into 
(3), translates to an underestimation of T by 70% and 80% 
when a constant field of 106V/cm is present [7]. This is due to 
the fact that the parabolic approximation fails to capture the 
elliptic property of the complex band structure, which is 
prominent at the point where the conduction and valence 
branches join.  

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Material Characterization 
Fig. 3 compares the direct tunneling trajectories among Ge, 

GaAs and GaSb. It is observed that for both large-gap and 
small-gap materials, and along typical orientations in the 
semiconductors, the complex branches that join the conduction 
band minimum and the valence band maximum are all close in 
shape to ellipsoids, showing the universality of our analytical 
model as applied to different semiconductors. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 compares the direct/indirect tunneling trajectories in 
Ge and Si. While the action integral for direct (Γ) and indirect 
tunneling (Γ-L) can be close for Ge devices, showing a possible 
transition from indirect to direct tunneling under strong electric 
field, the indirect (Γ-Δ) tunneling is the most probable BtBT 
mechanism in Si due to its large direct gap. The elliptic model 
captures both the close loop of the direct tunneling trajectory at  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Γ and the open trajectory for indirect tunneling at L and Δ 
within the energy region of interest. 

Fig. 5 compares the complex band structures of Ge and Si, 
stemming from their respective real conduction band minima. 
Note that along each direction, only the valleys that give the 
lowest effective mass are selected. The [110] direction has the 
smallest effective mass in both materials, because at least one 
of the valleys (L [1 -1 1] in Ge and X [001] in Si) shows 
transverse effective mass along [110]. The largest effective 
masses turn out to be along [100] in Ge and [111] in Si, since 
no valleys show transverse effective mass along these 
directions. 

Figure 2. Comparison between the parabolic effective mass approach and 
our analytical approach for approximating the tunneling modes of Ge 
along the [100] orientation. In both cases of direct and indirect tunneling, 
the parabolic approximation tends to overestimate the action integral and 
therefore underestimate the tunneling probability [7]. 

Figure 3. Direct tunneling modes along [100], [110] and [111] in bulk 
GaAs, Ge and GaSb. The symbols are the numerical results and the 
curves are from our analytical approximation. 

Figure 4. Indirect tunneling modes along the [100] orientation in Ge 
(left) and Si (right). The symbols are the numerical results and the 
curves are from our analytical approximation. 
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D. Parametrization of the Model 
Tables 1 and 2 list the fitted parameters of (1) and (2) for 

Ge, GaAs, GaSb and Si along different directions. The fitting 
errors are within 1.4% along all directions of these materials, 
which translates into a maximum error of T of less than 6% 
when a constant field of 106 V/cm is present. 

TABLE I.  FITTED mc AND mv VALUES FOR (1) AT Γ FOR THE DIRECT 
TUNNELING MODES OF Ge, GaAs and GaSb. VALENCE BRANCH OF Si IS ALSO 

FITTED FOR INDIRECT TUNNELING [7]. 

 mc (m0) mv (m0) EgΓ (eV) Fit. Err. 
Ge [100] 0.038 0.044 0.814 0.78% 

Ge [110] 0.037 0.037 0.814 1.09% 

Ge [111] 0.036 0.035 0.814 1.21% 

GaAs [100] 0.064 0.072 1.416 0.96% 

GaAs [110] 0.061 0.064 1.416 1.32% 

GaAs [111] 0.061 0.062 1.416 1.40% 

GaSb [100] 0.041 0.046 0.811 0.56% 

GaSb [110] 0.039 0.041 0.811 0.76% 

GaSb [111] 0.039 0.040 0.811 0.81% 

Si [100] 0.370 0.201 3.398 0.29% 

Si [110] 0.113 0.123 3.398 0.62% 

Si [111] 0.121 0.109 3.398 0.66% 

 

IV. CONCLUSIONS 
An analytically integrable model of complex band 

structures is developed to capture the inter-band tunneling 
modes in common semiconductors. The elliptic nature of the 
model allows accurate fitting to the numerical results within an 

error of 1.4%. The model improves the understanding of 
complex band structures and enables further development of 
both accurate BtBT models for device simulation and compact 
modeling of tunneling current. 

TABLE II.  FITTED Ecα AND Eqα VALUES FOR (2). (THE INDIRECT 
TUNNELING MODES OF Ge AND Si AT THEIR RESPECTIVE CONDUCTION BAND 

MINIMA.) ENERGY REFERENCE FOR Ecα IS SET AT THE VALENCE BAND 
MAXIMA. Eα  IS THE ESTIMATED ENERGY RANGE OF THE COMPLEX BRANCH AT 

THE L (Ge) OR Δ (Si) VALLEY. [7] 

 mcα (m0) Ecα Eqα(eV) Eα(eV) Fit. Err.
Ge@L [100] 0.116 0.678 1.081 1.940 0.24% 

Ge@L [110] 0.080 0.678 1.035 1.940 0.16% 

Ge@L [111] 0.090 0.678 0.993 1.940 0.12% 

Si@Δ [100] 0.202 1.131 1.451 4.223 0.07% 

Si@Δ[110] 0.185 1.131 2.865 4.223 1.27% 

Si@Δ[111] 0.256 1.131 2.701 4.223 0.83% 
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Figure 5. Lowest conduction branches of tunneling modes along 
different orientations in Ge at L (left) and Si along Δ (right). Symbols 
are numerical results and curves are analytical fittings to the symbols. 
While both materials have the smallest value of action integral along 
[110], the largest value of action integral is along different 
orientations in the two semiconductors. 
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