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Abstract — NEM relay is a promising class of device to overcome the
power crisis of CMOS circuits. To design these devices and predict
their scaling properties, an analytical model highlighting the
fundamental physics of the relay operation is highly desired. This
work presents a new 2D analytical model for the study of NEM
relay scaling. The model retains the physical insights for NEM
relays and yet has the simplicity close to the commonly used 1D
model. The error as compared to a finite element model is reduced
firom ~25% (1D model) to ~3% (this work) by introducing a ratio
R(a) to account for 2D effects in the 1D formulation. Besides the
fundamental mechanical and electrical properties, the model also
takes into account surface forces in the operation of NEM relay
devices. The impact of surface forces on the operation voltage as
devices are scaled down is discussed.
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I. INTRODUCTION

Transistor leakage sets a well-defined limit on the energy
efficiency of CMOS circuits independent of their level of
parallelism [1]. The nano-electro-mechanical (NEM) relay
promises to overcome this roadblock for they feature zero
leakage and infinite subthreshold slope (Fig. 1) NEM relay-
based adders have been demonstrated to achieve >10x energy
efficiency gain over optimized CMOS adders [2].

In this paper, we consider the 3-terminal (3T) NEM relay as
a prototypical NEM relay device. A conventional 3T NEM
relay consists of a cantilever beam (or the source electrode)
separated from the gate electrode by an air gap of g, (Fig. 2)
and from the drain electrode by an air gap smaller than g, (not
shown in Fig. 2) so that, upon actuation, the beam makes
contact to the drain and not to the gate. The attractive force
between the beam and the gate that deforms the cantilever
beam is dominated by the electrostatic force F. at a g, larger
than a critical dimension, g (The value of g, depends on
design variables of device dimensions). For devices with g,
smaller than g, the influence from surface attractive forces,
such as van der Waals force (F,qy), becomes more significant
and loads the beam together with the electrostatic force [3].
When the beam pulls towards the gate, a balance is established
between the restoring elastic force (F.,) from beam
deformation and the attractive forces (Faymctives €& Fele)- As the
beam deforms, Fuacive 1Ncreases faster than F., and at a
critical pull-in voltage (V;), Feia can no longer balance Fractive-
The beam becomes unstable and collapses towards the gate
electrode, making contact to the drain electrode. The status of
beam right before pull-in (“Pull-in Point”) is critical. The pull-
out voltage (V,,), another critical voltage in relay operation, is
the minimum voltage needed to hold the beam at the pull-in
state and is less than or equal to V,; (Fig. 1). V,; and V,, are
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Figure 1 (a) Scanning electron microscope (SEM) image of a

laterally actuated 3T NEM relay. (b) -V, characteristic of the NEM

relay in (a), showing desirable properties for low power application:

(1) off-state current in noise level; (2) sharp on/off transition. The

drain current is limited by a compliance current of InA in the
measurement.
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important properties, determining the delay and power of NEM
relay operations. With carefully designed device dimensions,
the hysteresis window between V,; and V,, can be made
sufficiently narrow [3]. Therefore, we focus our discussion of
operation voltage on V), as it sets a minimum boundary for the
required power supply voltage.

The existing quantitative study of electrostatically actuated
cantilever beams usually requires numerical analysis using
iterative calculation methods. There are three widely used
analytical models for the pull-in voltage: 1) 1D model with
parallel plate assumption [4], 2) linear superposition model
(LSM) [5], and 3) planar theory model (PTM) [6]. The error of
the 1D model V; compared to the numerical results is large
(~25%) because F,, is over-estimated in the 1D model when
calculated from the maximum deflection point on the beam.
Both LSM and PTM obtain very similar results with ~1% error
compared with numerical results because they take into
account the distributed load along the beam. However, LSM
can avoid numerical integration only if a square-law curvature
beam configuration is assumed, and the boundary-conditions in
the PTM need to be solved by iterative methods [5, 6]. When
forces other than Fy and F, (i.e. surface attractive force at the
van der Waals (F,4,)/Casimir (F,) regimes [7]) are introduced
into the analysis, the square-law assumption in LSM is no
longer valid. The numerical step in LSM and iterative
calculation in PTM make them difficult to arrive at a solution
analytically. Since the surface attractive force is important for
assessing NEM relay scaling [3], LSM and PTM are not
suitable for simple scaled NEM relay device modeling.
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Figure 2 Schematic of the 2D beam deflection model. Beam length
L, beam to gate gap size g,, maximum beam deflection z(L) (z(L) =
g, at Pull-in Point), and other device parameters are defined as
illustrated. f(x) (can be f, (x), f (x) or f (x) under different
conditions) is the force per unit length the beam experiences from the
actuating gate electrode and varies along the length of the beam.
Beam width in direction of movement is defined as &, and the beam
thickness perpendicular to the direction of movement is W.

II.  MODEL DERIVATION

The iterative calculations in obtaining V,; come from the
coupling of mechanical and electrical behaviors. The beam
bending configuration depends on the applied load (i.e. F,
Fy4w) which changes with the distance between the beam and
gate electrodes at a certain position, or the beam configuration.
Numerical integration, another factor that makes it difficult to
obtain an analytical equation for V,;, comes from the integral of
various distributed loads (i.e. Fee, Fyqyw) as a function of the
deflection z. Therefore, in order to achieve an analytical
equation for V,;, we need to make a reasonable assumption for
the beam configuration at Pull-in Point to avoid iterative
calculations and an approximation to the integral of the
distributed loads along the beam.

The derivation of the 2D model is summarized in Fig. 3. To
calculate the restoring force, F.j,, we first assume a uniformly
distributed load along the cantilever which pulls the beam to
the Pull-in Point. With the uniformly distributed load, the beam
deflection z(x) can be calculated by solving the Euler-Bernoulli
beam equation with boundary conditions for the clamped-free
cantilever [8]. The beam configuration can be obtained with

— 4 20,2 2

z(x) = Sam X (x* —4Lx + 6L7) (1)
where z(x) indicates the distance between the beam and gate
electrodes at position x along the beam. The z(x) calculated
from the uniformly distributed load has a fourth-order
polynomial dependency on x. The non-uniformly distributed
load will show a polynomial dependency higher than fourth-
order [9]. The error introduced by the uniformly distributed
load assumption is sufficiently small, which is verified by
comparing the approximated beam configuration with
COMSOL [10] simulated beam configuration. The expression
is valid only before Pull-in Point, at which the boundary
conditions no longer apply. At the Pull-in Point, x=L, eq. 1
becomes
al* _

2(L) = & = ag, 2)
where ag, is maximum deflection at Pull-in Point (Fig. 2). a
indicates the ratio between z(L) and g .

At the Pull-in Point, equivalent F,, which balances the
uniformly distributed load and keeps the beam stable, can be
represented as

Fela = qL = kag, ®)

where k is defined as an equivalent spring constant, which can
be expressed as

Assume uniform load
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Figure 3 Derivation of the 2D analytical model. Restoring forces
(F,) and attractive forces (F ) are decoupled. F  is calculated
from the equivalent spring constant. Integration of F . is avoided
by introducing the ratio factor R(a). E is Young’s Modulus of the
beam (160GPa for poly-silicon). and I is second moment of area.
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Faracive On the beam includes different components
(neglecting other non-ideal surface adhesion or stiction forces)
under different conditions:
1. When g is large (on the order of micrometers), the surface
attraction is much smaller than the electrostatic force.

Fattractive ~ Fele (5-a)
2. As g, becomes smaller, the surface attraction increases faster
than the electrostatic force and becomes increasingly
significant. When g, is larger than tens of nanometers, the
dispersion force is in the Casimir regime [7].

Fattractive~ l:ele + Fcas (S'b)

3. When g, smaller than the order of several tens of
nanometers, the surface attraction is in the van der Waals force
regime [7, 11].

Fattractive ~ Fele + Fvaw (5-¢)
As in the 2D model, we integrate the force per unit length
along the beam and get the total attractive force. The force per
unit length for each force components, fq, fiaw and f..s, can be
expressed as eq. (6) shown in Table 1. f,. is the derivative of
the electrostatic energy stored in the gap capacitor, CV?/2, with
respect to the gap size at position x. The fringing effect is
neglected. f4, and f.,, come from the definitions [6, 7].
Different forces show different dependencies on the distance
between beam and gate (gy — z(x)). Considering that the
expression for z(x) is a fourth-order polynomial equation, the
integrations of fy., fi4w and f.,; are very difficult without
numerical computation. We need a reasonable approximation
to eliminate the integration while maintaining the 2D effects
for different forces. As we compare the integral of eq. 7,
Fop = foL f(x)dx and eq. 8, which shows the upper bound for
these three forces (see Table 1) calculated from the 1D model
(Fupper), it is interesting to note that the ratios between F,p and
Fupper are independent of the applied voltage and device
dimensions when the expression of force per unit length has the
form

f(x) = constant/ (g, — z(x))" 6)
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Table. 1 Force per length f, upper bound F

upper

and ratio factor R(«) for different force components

Force per Length f(x) Upper Bound F___ Ra)=F, /F_
wy? WLV?
Fc]c fele(x) = Z(;OO—W (7'a) Fele,upper - ZC;((Z—W (s'a) Rele =1-1.2a+0. 2(12 (9-3)
(x) = AW 7-b _ ARWL 2
F, foaw(x) = pE—— (7-b) Foawupper = oo =y 8D |Ryqy = 1—1.72a + 0.74a*(9-b)
hem?gw hem?qWL

F, feas(x) = m (7-¢) Fcas,upper = m (8-¢) R.gs =1—-2.05a+ 1. 13“2(9-(:)
Note: gy = Dielectric constant of air; A, = Hamaker constant [9]; h=reduced Plank’s constant (4/2 ); ¢ = speed of light; n=1
for metal-to-metal plates [5]; &, W, L are device dimensions (Fig. 2).

If we define the ratio R as

R = F;p/ Fupper (10)
then the value of R only depends on a, and n is defined in eq.6.
With a second-order polynomial approximation, R for different
forces can be expressed as eq. 9 (Table 1, comparison with
numerical simulation shown in Fig. 4) and the integration can
be well represented by Fop = R(a) Fypper (€q. 10). The total
attractive force can be represented as

Fattractive = i Fiop = Xi Ri(a)Fupper (11
As Fig. 3 shows, both Fy, and F,eive are now analytically
expressed by the device dimensions, material properties,

applied voltage, and o. The pull-in voltage can be analyzed in a
similar approach as is done in a 1D model.

With eq. 3 and eq. 11 plugged into the equation for the
critical voltage for the pull-in condition,

Fela = Fattractive (12-a)
dFela _ dFattractive
da da (lz_b)
According to different components in Fyyueive, @ for pull-in
beam position can be deduced from the force equilibrium (eq.
12-a) and the derivative respect to o (eq. 12-b). The analytical
equation for pull-in voltage in Fig. 5 can be deduced:

2kg3a(1-a)?

Voi = \/sOWL(1—1.2a+0.2a2) (o= 0.52) (a3)
III.  RESULTS
The results from the 2D analytical model are compared with
1.0 .
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Figure 4 The second-order polynomial approximation (curve) for
R(0) verified with numerically calculated results (symbol).

COMSOL numerical results (Fig. 5-6), mainly focusing on F,,
Fee, and Fyyy (since in Casimir regime, the F,. is dominate).
The numerical results are verified with experimental data for
devices at large dimension. For the devices with gy> g, (Fygw
<< Fg) only Fg is taken into account for F,yacive. The
computed a is ~0.5, which is very close to the numerical result
a = 0.47 [5]. The error between calculated V,; and simulation
results stays within ~3% (Fig. 5). For the devices with a small
enough g, pull-in can occur even without an applied voltage
due to the F, gy (Fatractive = Fvaw)- @ calculated for this condition
is ~0.4 whereas the numerical result o = 0.36 [5]. Comparing
with COMSOL simulation results, for scaled NEM relays
where Fyraciive = Fele + Fyaw, the error in V,;is ~10% (Fig. 6).

IV. CONSTANT SENSITIVITY SCALING

Similar to MOSFETs, NEM relay devices would
demonstrate better performance in terms of delay and power
when scaled down to small feature dimensions. Constant-field-
scaling (CFS), which scales all the dimensions (gy, h, W, L) as
what we did for MOSFETs, is a possible scaling strategy [12].
However, due to the existence of surface attractive force, CFS
turns out not to be the optimal strategy. It is noticed that, if
surface attractive force were not present, it would be possible
to scale gy down to arbitrarily small values (as long as field-
emission current between the beam and the drain electrodes is
not significant), resulting in a device with shorter operation
delay and lower power consumption. However, the surface
attractive force increases dramatically when the feature
dimension reduces. When g, reduces to a dimension small
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Figure 5 (a) Comparison between 1D model and 2D model for V
without including F . The error of the 1D model is ~25%. Our 2D
model reduces the error to ~3% for V.
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Figure 6 Comparison between 2D model (this work) and numerical
simulation for V; including F, . The error is ~10%.

enough (depends on the other design variables), even without
any voltage applied between beam and gate electrodes, the
surface attractive force would pull in the beam and hold it at
the pull-in state. A better scaling strategy would be Constant-
Sensitivity-Scaling (CSS) [3, 12], where sensitivity is defined
as
d]Ongi _ dln(Vpi)
dlog(go) ~ ©%  dgo (14)
S represents the variation in Vy; that results from the
variation in gy, which is usually determined by the fabrication
process. In CSS, S needs to be smaller than a maximum value
which makes sure the devices function properly. When S starts
to increase with reduced gy, the aspect ratio L/h of the beam
(which is kept constant in CFS) needs to be reduced to keep S
smaller than the maximum acceptable value.

0

The new model provides a prediction for the critical
dimension g, at which V,; starts to be influenced by F.4, and
the slope of V,; vs gy at dimensions smaller than this g (Fig.
6). Fig. 7 demonstrates different trends for V,; in scaled relay
designs, S is calculated from the slope of the V|, vs go. When g,
> gy, Vi reduces linearly in log scale and S keeps constant,
thus relay can scale with CFS strategy (stays on one design
curve in plot). When gy < g, S is no longer constant and
increases with reduced gy, so S needs to be taken into design
consideration. To achieve an immune to variation in g, relays
must scale with a CSS strategy (move from one design curve to
another in plot) by reducing L/g,.

V. CONCLUSION

This work proposes a 2D analytical model for NEM relay
design which provides a relatively accurate analysis while
keeping the simplicity of an analytical solution even when F,gy,
F..s are considered. The error between the analytical solutions
and 2D simulation results from COMSOL is around 3% when
only Fg. and F,, are considered for devices with large g,. The
error is ~10% for devices scaled to small g, when the impact of
Fy4w also needs to be considered. The application of newly
developed model in CSS is demonstrated and the impact of
surface attractive force is discussed. The new model can help
designers gain better insights into the balance and competition
among the forces at different device dimensions.
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Figure 7 The 2D model can be used for studying the Constant
Sensitivity Scaling (CSS) strategy [3, 12] which accounts for device
fabrication variation and takes both F, and F  into consideration
(see [3] for CSS). Each design curve on plot has a different design
choice in L/g, follow the arrow to move from one design curve to
another, L scales faster than other dimensions to keep S constant.
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