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Figure 1. a) and b) show 8 and 72 atom unit cells we use for SiC DFT 
calculations, respectively. c) Densities of states curves calculated by 
Quantum Espresso [1] for the above structures.  
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Abstract— We present density functional theory based 
calculations of band structure and density of states curves for 
bulk silicon carbide (SiC) and possible silicon carbide-silicon 
dioxide (SiC-SiO2) interfaces. We then show carrier transport 
calculations in these structures using Monte Carlo techniques. 
This is for understanding the origins of the bandgap traps arising 
from the SiC-SiO2 interface, which are of relatively high 
concentration in SiC MOSFETs compared to those in Si 
MOSFETs. It is also for investigating the effects of different 
atomic configurations on channel mobility, on-resistance, and 
thus losses in SiC power MOSFETs that are used as low-loss 
switching devices in high power high temperature applications. 

Keywords-Silicon carbide; Monte Carlo transport; density of 
states; silicon carbide-silicon dioxide interface; silicon carbide 
interface traps. 

I.  INTRODUCTION 
Silicon carbide is emerging as a material of choice for high 

power high temperature applications due to its favorable 
intrinsic electrical properties such as high breakdown field, 
high thermal conductivity, low noise and wide bandgap. 
Silicon carbide also has the advantage of having a native oxide 
which is silicon dioxide. As silicon along with its native oxide, 
silicon dioxide, has propelled today’s integrated circuits, we 
expect silicon carbide similarly to open new paradigms in 
power electronics, and to be the driving force behind highly 
efficient low-loss power systems. As a matter of fact, SiC 
MOSFETs recently became commercially available. However, 
they lack the latest mature fabrication methods developed for 
silicon devices, and thus exhibit current-voltage characteristics 
that are not on par with silicon carbide’s full potential (high 
mobility and low channel resistance). But SiC power 
MOSFETs are still advantageous over their silicon counterparts 
in high power and voltage applications in terms of efficiency 
and relatively lower losses. The main culprits that prevent SiC 
MOSFETs from reaching their full potential are the bandgap 
traps arising due to the silicon carbide-silicon dioxide interface. 
These traps result in low subthreshold swings, high threshold 
voltages, and most importantly low field effect mobilities 
(giving rise to high channel on-resistances). Therefore, it is of 
utmost importance to understand the silicon carbide-silicon 

dioxide interface at the atomic level for finding passivation 
methods for these traps and defects, as well as for investigating 
the effects of different structures on electron-phonon and 
Coulomb scattering limited mobilities that eventually dictate 
Joule losses in SiC power MOSFETs. To this end, we simulate 
different SiC-SiO2 interfaces including possible defects, 
vacancies, interstitials, etc. using density functional theory 
(DFT) based methods [1]. We later import densities of states 
calculated for these structures into our Monte Carlo (MC) 
transport simulator [2] to obtain electron-phonon limited 
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Figure 3. Electron-phonon limited mobility for bulk SiC (red curve - top), 
abrupt SiC-SiO2 interface (blue curve –second from top),  SiC-SiO2 

interface with an oxygen interstitial (yellow curve –second from bottom), 
and SiC-SiO2 interface with a carbon interstitial (purple curve –bottom). 
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mobilities as well as effects of Coulomb scattering with various 
concentrations of scatterers on these mobilities.  

 

II. DENSITY FUNCTIONAL THEORY CALCULATIONS 
We use density functional theory to calculate dispersion 

relations and densities of states in bulk silicon carbide and SiC-
SiO2 interfaces. These simulations are based on the 
approximate many body solution of the Schrodinger equation.  
The solution takes into account electron kinetic energy, 
attractive energy between electrons and nuclei, repulsive 
energy between nuclei, kinetic energy of nuclei, and attractive 
energy of nuclei. To calculate an approximate solution to the 
above problem (or to obtain the bandstructure for various 
physical arrangements), we use the Quantum Espresso 
simulator [1]. We also note that the structures input into the 
DFT simulator (physical locations of the atoms) are relaxed 
before the corresponding bandstructures and densities of states 
are calculated. This is especially important for investigating 
possible SiC-SiO2 interfaces since the details of the interface 
are not known and hence there is an uncertainty about the 
locations of the defects, types of defects, and atoms at the 
interface. As we arrange different atoms in suspected 
configurations, we let the system relax before we calculate 
further details. This avoids energy levels that might emerge due 
to the stress on the individual atoms in the system, which 
otherwise may correspond to unstable configurations.  

Figure 1 and 2, respectively, show silicon carbide and 
silicon dioxide cells used in our DFT calculations. We also 
show the density of states curve calculated for bulk silicon 
carbide as well as electron dispersion relations obtained for the 
α-quartz, which is used as the silicon dioxide layer in SiC-SiO2 
interface studies.  

III. SILICON CARBIDE MONTE CARLO TRANPORT 
To determine mobilities and carrier velocities in bulk 

silicon carbide and at various SiC-SiO2 interfaces, we develop 
a Monte Carlo transport simulator [2] that uses the deformation 
potential approximation, Fermi’s golden rule, and the densities 
of states calculated by DFT to calculate carrier scattering rates.  Γ௔௖ሺܧሻ ൌ ௔௖ଶܦ ݇஻ܶߩ԰߭ଶߨ  ሻ                                          ሺ1ሻܧሺܱܵܦ

Γ௢௣௔௕ሺܧሻ ൌ ௢௣ଶܦ ԰2ܧߩ௢௣ߨ ܰ൫ܧ௢௣൯ܱܵܦ൫ܧ ൅  ௢௣൯               ሺ2ሻܧ

Γ௢௣௘௠ሺܧሻ ൌ ௢௣ଶܦ ԰2ܧߩ௢௣ߨ ൣܰ൫ܧ௢௣൯ ൅ 1൧ܱܵܦ൫ܧ ൅  ௢௣൯    ሺ3ሻܧ

Γ௜௠௣ሺܧሻ ൌ ௜ܰ௠௣݁ଷ16԰݇ସ߳ଶߨ ቆ ସ1ߛ ൅ ଶቇߛ  ሻ                ሺ4ሻܧሺܱܵܦ

Equations (1)-(4) show the scattering rates as a function of 
density of states. Here (1) is the acoustic phonon scattering rate 
that is calculated using acoustic deformation potential,ܦ௔௖ , 
Boltzmann constant, ݇஻ , temperature, ܶ ,density, ߩ , reduced 
Planck’s constant, ԰, and sound velocity, ߭, in addition to the 
density of states. Equation (2) represents the optical phonon 
absorption rate, and (3) is for optical phonon emission rate. 
Above, ܧ௢௣  is the optical phonon energy, and ܰ൫ܧ௢௣൯ is the 
Bose-Einstein phonon occupation number at this phonon 
energy. Additionally, (4) shows the ionized impurity scattering 
rate based on the Brooks-Herring formalism. In the last 
equation, the newly introduced variables are impurity 
concentration, ௜ܰ௠௣, dielectric constant, ߳, momentum, ݇, and 

a)  

b)  
Figure 2. a) Example of alpha quartz unit cell we use for SiO2 DFT 
simulations along with b) its calculated dispersion curves plotted for high 
symmetry k points. 
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a)  

b) 
Figure 4. a) Unit cell used in DFT calculations for abrupt SiC-SiO2 
interface b) The DFT calculated densities of states curves for the above 
structure. 

screening parameter, ߛ. Furthermore, we also include the polar 
optical emission and absorption scattering rates into our 
transport calculations. (The constants used in these equations 
along with details of transport calculations can be found in [2].) 
In addition, we note that the above equations for scattering 
rates are obtained by eliminating the effective mass in standard 
scattering rate formulas, and adding the DFT calculated 
densities of states into the equations. 

We also use the densities of states (DOS) curves to 
calculate an average dispersion relation for electrons. More 
specifically, we integrate the DFT DOS curves in energy. The 
resulting integral is proportional to the cube of the momentum. 
Therefore we relate momentum to a unique energy solving for 
the energy that satisfies the aforementioned integral (integral of 
DOS(E) from the conduction band minimum to E equals to k3 

times a constant factor).     

Using the averaged dispersion relation along with the 
scattering rates, we determine the low field mobility for the 
system. The red curve in Figure 3 shows our simulated 
mobility versus field curves for intrinsic bulk silicon carbide. 
In this figure, the low field mobility shown for bulk silicon 
carbide is approximately 900 cm2/Vs, and it rolls off, as 
expected, for rising applied fields. 

 

IV. SIC-SIO2 INTERFACE: DENSITY FUNCTIONAL THEORY 
AND MONTE CARLO PREDICTIONS 

To investigate physical origins of traps and defects at the 
SiC-SiO2 interface, and to examine effects of different interface 
configurations on mobilities, we use the vast data (possible 
defects, traps, structures as well as dispersion relations and 
densities of states curves) that can be extracted from DFT 
calculations along with our Monte Carlo transport simulations. 
DFT results of possible defects such as vacancies, interstitials, 
silicon-oxycarbide bridges [3], and substitutions provide effects 
of each type of defect on the bandstructure and densities of 
states. We then compare the calculated trap distributions and 
total concentrations with those of measured to decide on most 
likely defects at the SiC-SiO2 interface. In addition to using the 
total interface trap density and its distribution within the 
bandgap for finding configurations that govern operation of 
modern SiC devices, we also use Monte Carlo calculated 
mobilities to further narrow the possibilities for the interface.     

Figures 4 and 5 show two of our SiC-SiO2 interface 
configurations: Figure 4 depicts an abrupt SiC-SiO2 interface 
and Figure 5 shows the same interface with a carbon 
interstitial. Here blue, yellow and red spheres represent silicon, 
carbon and oxygen, respectively. The SiC bottom layer is 
composed of 36 carbon and 36 silicon atoms, and the top layer 
is a matching α-quartz. The unit cells used in DFT calculations 
are those shown in Figures 4(a) and 5(a) along with vacuum 

a)  

 
b) 
Figure 5. a) Unit cell used in DFT calculations for SiC-SiO2 interface 
with a carbon interstitial b) The DFT calculated densities of states curves 
for the structure in a). 
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Figure 6. Electron-phonon and coulombic scatterer limited mobility as a 
function of ionized impurity (coulombic scatter) for abrupt SiC-SiO2 
interface (blue curve –top),  SiC-SiO2 interface with an oxygen 
interstitial (orange curve –middle), and SiC-SiO2 interface with a carbon 
interstitial (yellow curve –bottom). 
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layers at the bottom and top of each structure. Due to the 
thickness of this vacuum layer, one can think of the structure as 
a quasi-two-dimensional interface layer. Further, we passivate 
the dangling carbon atoms at the bottom with hydrogen, 
represented by small blue spheres. Figures 4(b) and 5(b) show 
the calculated densities of states for the abrupt interface, and 
the interface with carbon interstitial, respectively. In both DOS 
plots, the valence band starts from roughly 6eV (=Ev) and 
corresponds to energies lower than Ev. The conduction band 
roughly starts from 7.5eV (=Ec), and includes energies larger 
than Ec. We note that DFT calculations may give rise to 
smaller bandgaps (which may be corrected using hybrid 
functional calculations); however, the DFT provides reasonable 
values for DOS. The calculated DOS within the conduction and 
valence bands can be used to obtain carrier transport 
characteristics. The simulated DOS within the bandgap can be 
used in conjunction with a reference experimental value to 
determine the total trap densities that may arise due to different 
physical structures.   

To obtain mobilities in different SiC-SiO2 transition regions 
and Coulomb limited channel mobilities, we use our 
aforementioned Monte Carlo simulator. There are two inputs to 
the MC simulator. The first is the volume of the unit cell to 
calculate DOS per volume. The second is the DFT-DOS curve 
or values starting from the conduction band edge of a given 
structure. As can be noticed in the plotted DFT-DOS curves, 
the determination of the conduction band edge for a given 
structure is nontrivial, since there are states within the bandgap 
and DOS does not show a jump in values where the Ec starts. 
Thus we use the following algorithm: The first energy larger 
than the DFT calculated Fermi level where DOS approaches 10 
states/eV is used as the edge of the conduction band or Ec. We 
further assume that the quasi two-dimensional interface layer 
simulated enables us to use a three-dimensional transport 
simulator provided that the DFT-DOS has correct units. 
Additionally, we assume that the DOS bumps corresponding to 
silicon dioxide states are high in energy and do not 
significantly affect the simulated transport curves. Likewise, 
the effect of bulk SiC on the transport is minimal as pure SiC 
gives rise to larger mobilities, and the subtleties arising in the 
bandgap and near Ec are observed to be directly correlated with 
defects, traps, vacancies, etc. introduced at the interface. 
Therefore, MC calculations provide bulk and Coulomb limited 
mobilities in SiC-SiO2 transition regions.      

Our previous study that corroborates with experiments 
performed on differently doped SiC MOSFETs [4], along with 
spectroscopy measurements [5], indicate that there can be a 
transition region between SiC and SiO2, and therefore it may 
exhibit mobilities varying from that of SiC. To investigate this, 
we simulated transport in structures shown in Figures 4 (abrupt 
SiC-SiO2 interface) and 5 (SiC-SiO2 interface with a carbon 
interstitial) along with bulk SiC and SiC-SiO2 interface with an 
oxygen interstitial. Our calculated electron-phonon limited 
transition region mobilities, which are lower than that of bulk 
SiC, are plotted in Figure 3. These calculated results 
corroborate well with mobilities calculated using different 
techniques [4,6]. 

In modern SiC MOSFETs, the peak field effect mobilities 
(generally measured in the linear region, using drain current 
versus drain voltage curves when gate-to-source voltage is 
roughly equal to Vth) are usually less than 50 cm2/Vs. This is 
thought to be due to Coulomb scattering from trapped interface 
charges [4,6]. To examine effects of different amounts of 
interface traps on the aforementioned transport calculations, we 
calculate the low field mobility as a function of different levels 
of coulombic scatterers in these structures. The results plotted 
in Figure 6 show mobilities in lower double digits as the 
coulombic scatterer concentration approaches 1020 cm-3. 
Assuming a transition region thickness of 1nm, the above-
mentioned coulombic scatterer concentration can be translated 
into an aerial concentration of 1013 cm-2, which is consistent 
with total acceptor type trap levels measured for SiC-SiO2 
interfaces [4,6].   

In summary, we investigate possible SiC-SiO2 interface 
layers using DFT, and calculate bandgap traps and dispersion 
relations arising from these structures. We then input DFT-
DOS values into our MC simulator to calculate transition layer 
bulk mobilities and Coulombic scatterings. The calculated 
mobilites corroborate well with experiments, and the 
simulations provide in-depth insight into the physical and 
electrical properties of SiC-SiO2 interfaces.  
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