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Abstract—Using a sp3d5s∗ tight-binding model for the elec-
trons and a valence force field model for the phonons, we
investigate the electron-phonon scattering rates in Si and Ge. The
bulk Si mobility calculated with this model (µ = 1400 cm2/V/s)
and its temperature dependence agree well with experimental
data. We are able to analyze the much lower values obtained in
Si nanowires where both carriers and phonons are confined.

I. INTRODUCTION

Silicon nanowires (SiNWs) have attracted significant inter-
est as promising building blocks for nanotechnologies. They
can be fabricated by bottom-up approaches [1] or by tech-
niques compatible with standard complementary metal-oxide
semiconductor (CMOS) process [2]–[4]. Recently, SiNWs
with diameter d below 12 nm have been manufactured with
excellent structural properties, which opens new opportunities
for the design of nanoscale devices and for the exploration
of quantum transport phenomena in low-dimensional systems.
SiNWs can be used to build gate-all-around transistors in
which short channel effects are reduced thanks to a better
gate control, and transistors based on arrays of vertically
stacked SiNWs with diameter close to 10 nm have been
recently reported [5], [6]. In this context, it is essential to
understand the effects of quantum confinement on the transport
properties of small SiNWs, and to elucidate mobility-limiting
mechanisms [7]–[17].

During the last three decades the intrinsic transport prop-
erties in strained nanodevices (such as the mobility and the
saturation velocity) have been extensively studied using, e.g.,
full band Monte Carlo simulations. Considering that at room
temperature, the transport properties of Si- and Ge-based
devices strongly depend on the carrier-phonon interactions,
it may come as a surprise that a full quantum treatment of
this interaction (and in particular its variation with mechanical
stress and with quantum confinement) is still incomplete. Most
of the calculations available so far in Si and Ge rely on
empirical isotropic deformation potentials (assuming either
the overlap integral to be unity [18], [19] or adopting the
Nordheim approximation [19]–[22]). Pseudo-potential-based
studies taking into account the full anisotropy of the scattering
rates have been performed in bulk Si by Kunikiyo et al. [23].
However, despite the significant progress achieved by these
authors, the former calculations (as pointed out by Nguyen
and Hofmann [21]) use an incorrect formulation of the atomic
position in the unit cell. It ought to be noted that a recent first

principle quantum-mechanical treatment with density func-
tional theory (DFT) of the electron-phonon scattering rates
in Si [24] highlighted noticeable discrepancies with previous
semi-empirical results.

In this work, we investigate electron-phonon scattering in
bulk Si, Ge, and in SiNWs with a fully atomistic semi-
empirical approach. We use a recently developed sp3d5s∗

tight-binding (TB) model for the electronic structure [25] and
a valence force field model for the phonons [26]. This tight-
binding model reproduces the deformation potentials of Si and
Ge in the whole first Brillouin zone and shall therefore be ap-
propriate for the description of the electron-phonon interaction.
We briefly review the computational details in the next section,
then discuss the main results and conclusions in section III.
We focus here on the low-field mobility as a metrics of the
electron-phonon coupling strength and performances of the
nanodevices.

II. COMPUTATIONAL METHODS

As testified by the increasing number of calculations, the
atomistic TB method is well suited to the description of
the electrical properties of nanodevices. Recently, several
improvements have been introduced in the TB models to
account for arbitrary strains [25], [27], [28]. It is, therefore,
now possible to perform a rigorous atomistic calculation of
the carrier-phonon interaction from bulk materials to, e.g.,
nanowires. The results presented here follow the methodology
of Ref. [17], in which the electron-phonon interaction is
expanded as a function of the derivatives of the Hamiltonian
with respect to the atomic displacements. The phonons are
computed with the valence force field model of Ref. [26]. All
possible couplings between electron bands and phonon modes
are taken into account in the calculations.

We consider a system subject to a homogeneous electric
field E = Eu, and split the distribution function fnk of band
n and wave vector k in two parts, fnk ' f0

nk+eEgnk, where
f0 is the equilibrium Fermi-Dirac distribution function, and
eEgnk is the first order variation of the distribution function.
The gnk’s fulfill the equations:

u · vnk
df0

nk

dε
=

∑
m

∫
dk′ρ(k′)

gnk
{
W (nk,mk′)[1− f0

mk′ ] +W (mk′, nk)f0
mk′

}
− gmk′

{
W (mk′, nk)[1− f0

nk] +W (nk,mk′)f0
nk

}
,(1)
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Fig. 1: The calculation of the electron-phonon scattering rate in
bulk materials require a 3D integration of W (nk,mk′) over
the full Brillouin Zone. This integration is performed on a
dense mesh with 310 480 tetrahedra: (left) One eighth of the
mesh showing dense regions near ∆ valleys; (right) Same but
showing another dense region near L valleys.

where vnk is the electronic group velocity, W (nk,mk′) is
the scattering rate between bands nk and mk′ computed with
Fermi Golden rule [17], and ρ(k) is the density of k-points in
reciprocal space. The above linear system of equations couples
all gnk’s together and can be very large. In bulk materials, the
integration over k′ is performed on a dense tetrahedral mesh
(310 480 tetrahedra) with the Gilat-Raubenheimer method (see
Fig. 1), and Eqs. (1) are solved iteratively until self-consistency
is achieved (4− 5 iterations). In nanowires, the integration is
performed on a regular 1024 k-points mesh of the 1D Brillouin
zone, and the above linear system of equations is directly
inverted with LAPACK. Once the gnk have been calculated,
the mobility is given by:

µ = −e

∑
n

∫
dkρ(k)gnku · vnk∑
n

∫
dkρ(k)f0

nk

. (2)

III. RESULTS AND DISCUSSION

The room-temperature mobilities computed in bulk Si with
this methodology and 3 different sp3d5s∗ TB models [25],
[27], [28] are reported in Table I. The model of Ref. [25],
which has been designed to reproduce all deformation po-
tentials of Si, yields bulk mobilities in excellent agreement
with the experimental data (µexp = 1400 cm2/V/s). This
agreement extends over (at least) the whole temperature range
relevant for technological applications, as shown in Fig. 2. The
mobility computed in bulk Germanium with the same model,
µ = 4900 cm2/V/s, is, on the other hand, 25% larger than
expected (µexp = 3900 cm2/V/s). It is however unclear at
present whether this discrepancy results from the TB model
itself (the deformation potentials of bulk Ge are not as well
characterized as those of bulk Si), or from deficiencies of, e.g.,
the Fermi Golden rule. From now on, we focus on the results
obtained with the TB model of Ref. [25].

Model µ (cm2/V/s)
Ref. [25] 1407
Ref. [27] 1770
Ref. [28] 2141

TABLE I: Room-temperature mobility computed at low carrier
density in bulk Si with three different sp3d5s∗ TB models [25],
[27], [28].

Fig. 2: The bulk mobility in silicon as a function of tem-
perature T , computed with the TB model of Ref. [25], and
compared with the experimental data µ = 1400(T/300)−2.42

for T > 150 K.

Fig. 3: The total scattering rate νnk =
∑

mk′ W (nk,mk′)
in bulk Si as a function of the energy E of the incident
electron nk. The blue dots are individual νnk points, showing
the dispersion, and the solid red line is the average (weighted
by the density of states at each individual point). Ec is the
conduction band edge energy.

The total scattering rate νnk =
∑

mk′ W (nk,mk′) in bulk
Si is plotted as a function of the energy E of the incident
electron nk in Fig. 3. This figure shows the typical dispersion
of the scattering rate from single nk points (individual blue
dots) around the average value (solid red line).

The total scattering rate obtained with the TB model of
Ref. [25] is compared with other semi-empirical and ab initio
approaches in Figs. 4 (Si) and 5 (Ge). While all methods
agree on the overall shape and magnitude of the electron-
phonon scattering rates, there are significant discrepancies in
the 0.3–1 eV range, which corresponds to high field transport
in advanced nanodevices (see also Ref. [19] for a larger set
of empirical results). In particular, the scattering rates in Si
are significantly larger at high energy with the TB model of
Ref. [25] than with other semi-empirical approaches. We note,
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Fig. 4: The total scattering rate νnk =
∑

mk′ W (nk,mk′) in
bulk Si as a function of the energy E of the incident electron
nk. The TB model of Ref. [25], the semi-empirical models of
Refs. [20] and [22], and the ab initio density functional theory
results of Ref. [24] are compared. Ec is the conduction band
edge energy.
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Fig. 5: The total scattering rate νnk =
∑

mk′ W (nk,mk′) in
bulk Ge as a function of the energy E of the incident electron
nk. The TB model of Ref. [25], and the semi-empirical model
of Refs. [20] and [22] are compared. Ec is the conduction band
edge energy.

though, that this trend is corroborated by the recent ab initio
density functional theory calculations of Ref. [24]. As for Ge,
the TB scattering rates lie between the semi-empirical results
of Refs. [20] and [22]. Ongoing calculations of the saturation
velocity for the different models shall clarify the situation, but
are beyond the scope of the present work.

We now discuss the case of free-standing (hydrogen pas-
sivated) silicon nanowires. The total scattering rate νnk =∑

mk′ W (nk,mk′) in a 4 nm diameter 〈001〉 SiNW is plotted
as a function of the energy of the incident electron in Fig. 7. At

Fig. 6: Band structure of a 4 nm diameter 〈001〉 SiNW. Ec

is the conduction band edge energy. The lowest-lying valleys
at Γ are almost fourfold degenerate, while the higher-lying
valleys off Γ are twofold degenerate.

Fig. 7: The total scattering rate νnk =
∑

mk′ W (nk,mk′) in
a 4 nm diameter 〈001〉 SiNW as a function of the energy E of
the incident electron. The blue dots are individual νnk points,
showing the dispersion, and the solid red line is the average
(weighted by the density of states at each individual point).
Ec is the conduction band edge energy. The first group of
peaks is associated with the first (almost fourfold degenerate)
subbands at Γ, and the second group of peaks around 70 meV
to the higher-lying valleys off Γ (see Fig. 6).

variance with the bulk, the scattering rate exhibits a complex
structure, with multiple Van Hove singularities typical of
1D systems. The first group of peaks in Fig. 7 is related
to intraband acoustic scattering within the (almost) fourfold
degenerate valley at Γ, while the second group around 70
meV is associated with the two higher lying valleys off Γ
(see band structure in Fig. 6). There are multiple replicas of
the main peaks characteristic of the phonon subband structure.
The scattering rates are, on average, larger than in the bulk
within the same energy range, suggesting an enhancement of
the electron-phonon interaction in confined nanowires.

The TB, phonon-limited mobility in 〈001〉 SiNWs is plotted
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Fig. 8: The room-temperature TB mobility in 〈001〉 SiNWs as
a function of nanowire diameter d. The horizontal dash-dotted
line is the bulk limit. The carrier density is n = 1018 cm−3.

as a function of the nanowire diameter d in Fig. 8, in the 1–8
nm range. As expected from Fig. 7, the mobility is strongly
hindered by the phonons in the smallest nanowires, and slowly
increases with diameter. It is reduced by more than two-third
in < 5 nm diameter nanowires, and still by ' 20% in 10 nm
diameter nanowires. This shows that the benefits of quantum
confinement (decrease of intersubband and intervalley scatter-
ing) do not overcome the strong enhancement of the electron-
phonon interaction in small nanowires.

IV. CONCLUSIONS

We have discussed electron-phonon scattering in bulk Si and
Ge and in Si nanowires within an atomistic framework. We
have used a sp3d5s∗ tight-binding model for the electrons [25],
designed to reproduce the deformation potentials of the bulk
materials in the whole first Brillouin zone, and a valence
force field model for the phonons [26]. All possible scatterings
between electron bands and phonon modes have been taken
into account. The TB mobility is in excellent agreement with
experimental data in bulk Si, but overestimates the mobility
by about 25% in bulk Ge. The total scattering rate is larger at
high energy (high bias) in the TB description than in previous
semi-empirical studies, but in close agreement with recent
ab initio data obtained with density functional theory. This
model, applied to SiNWs with diameters in the 1–8 nm range,
shows that the electron-phonon interaction is a major source
of scattering in ultimate nanodevices. The low-field mobilities
can indeed be reduced by more than 70% in < 5 nm diameter
〈001〉 Si nanowires, and by ' 20% in 10 nm ones.
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