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Abstract—Random telegraph noise (RTN) magnitude of MOS-
FETs is analyzed using three-dimensional device simulation
taking random discrete dopant into account. The maximum RTN
magnitude is inversely proportional to the RTN region area in
which the surface potential is in the vicinity of its saddle point.
The inverse of the maximum RTN magnitude exhibits a normal
distribution.

I. INTRODUCTION

Random telegraph noise (RTN) has been a serious concern
in scaled CMOS technology[1], as its effects are becom-
ing comparable to traditional sources of threshold voltage
fluctuation such as random dopant fluctuation. The large
variation of the RTN magnitude is attributed to random dis-
crete dopant[2]. Although the statistical distribution has been
successfully expressed by exponential distribution[3] or log-
normal distribution[4], physical origin of these distributions
has not been clarified yet.

In this paper, RTN magnitude is analyzed using three-
dimensional device simulation taking random discrete dopant
into account.

II. MODELING

The RTN magnitude ∆Vth is defined as a threshold voltage
shift caused by a trap in this paper. The threshold voltage is
defined as a gate voltage at which the drain current divided by
Wg/Lg is 0.1µA. The observation time period is assumed to
be much longer than the time constants of RTN. Drain current
fluctuation caused by an interface trap is converted to the
threshold voltage shift by dividing by transconductance. The
transconductance is calculated using small-signal AC analysis.

The impedance field method[5] is used to simulate current
fluctuation. The current fluctuation is calculated as the prod-
uct of elementary charge and a Green’s function, which is
defined as current fluctuation at a terminal caused by electric
charge density fluctuation. Perturbation to Poisson equation
is included in the Green’s function because electric charge
explicitly appears only in the Poisson equation.

The advantage of the impedance field method is its ef-
ficiency to derive a contour plot of RTN magnitude as a
function of trap position. A large number of simulation runs
are required to obtain the same contour plot if a conven-
tional method in which a single charge is located at a trap
position is used. The maximum RTN magnitude ∆Vthmax is
obtained from the contour plot. Simulated RTN magnitude
using the impedance field method is compared to that using the

conventional method in Fig. 1. The impedance field method
and the conventional method give the same results, which
proves that the linear response of the terminal current to local
fluctuation assumed in the Green’s function is applicable to
RTN simulation.
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Fig. 1. Simulated RTN magnitude as a function of the trap location xt along
the Si/oxide interface from the source to the drain using the impedance field
method (IMF) and a conventional method with a single trap. The gate length
is 65 nm and the gate width is 1 µm.

The random discrete dopant is assigned using the nearest
grid point method. The number of dopant atoms is assumed
to exhibit Poisson distribution. A statistical sample of 100
devices is simulated to obtain statistical distribution of the
RTN magnitude.

III. RESULTS AND DISCUSSION

Simulated n-channel MOSFETs have a substrate with a
constant impurity profile and source and drain diffusion layers
with Gaussian impurity profiles. The substrate impurity con-
centration is 2×1018 cm−3. The junction depth is 0.1 µm. Halo
implantation is not included. The equivalent oxide thickness
is 2.5 nm.

As the channel length shrinks, the maximum RTN mag-
nitude ∆Vthmax is larger than the value predicted by a
conventional formula q/(CoxLeffWg)[6] even if the random
discrete dopant is not taken into account as shown in Fig. 2 (a).
The discrepancy is reduced by introducing an RTN region
in which the surface potential −qψ is within the kT -range
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from its maximum point as shown in Fig. 3. The surface
potential outside the RTN region is less sensitive to the
trapped charge because of a large inversion layer capacitance
Cinv ≡ ∂Qinv/∂ψ associated with large inversion charge
density Qinv. The average surface potential fluctuation caused
by a trap in the RTN region is q/(CoxLrtnWg) using the RTN
region length Lrtn. The formula successfully expresses the
simulated magnitude as shown in Fig. 2 (b).
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Fig. 2. Maximum RTN magnitude with continuous doping distribution as a
function of (a) the effective channel length, and (b) the RTN region length.
The effective channel length Leff is extracted from channel resistance as a
function of gate length and gate voltage[7]. The RTN region length is defined
in Fig. 3. The gate width Wg = 1 µm.

The concept of the RTN region is extended to the
non-uniform surface potential caused by random discrete
dopant[2]. An interface trap at the point where the surface
potential has its saddle point has the largest influence on the
threshold voltage as shown in Figs. 5, 6. The saddle point of
the surface potential is used to define RTN region instead of a
maximum point because the potential at the saddle point is the
highest on the current path from the source to the drain. An
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Fig. 3. Schematic picture of the surface potential −qψ, carrier concentration
n, and the RTN region length Lrtn.

RTN region area Artn is defined by AkT −Aineff , where AkT

is the area in which the surface potential is in the kT -range
from the saddle point and Aineff is the sub-area of AkT which
does not contribute to the drain current. As the sub-area Aineff

consists of narrow or isolated areas as shown in Fig. 5 (b), it is
assumed to be proportional to the gate width Wg and expressed
by 2LineffWg with a fitting parameter Lineff .
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Fig. 4. Schematic picture of the surface potential −qψ, its saddle
point −qψsp, and the area AkT in which −qψ is in the kT -range from
−qψsp. Gate length and width directions are x and z, respectively.
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Fig. 5. Surface potential distribution measured in volts in the kT -range from
its saddle point. The gate length Lg = 65nm, the gate width Wg = 100 nm,
and the drain voltage Vd = 0.05V. Dopant distributions are (a) continuous
and (b) discrete, respectively.
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Fig. 6. RTN magnitude measured in volts as a function of the interface trap
location. The gate length Lg = 65nm, the gate width Wg = 100 nm, and
the drain voltage Vd = 0.05V. Dopant distributions are (a) continuous and
(b) discrete, respectively.
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The maximum RTN magnitude is successfully expressed
with a formula q/(CoxArtn) when Vd = 0.05V as shown in
Fig. 7 (a). The nonuniform surface potential caused by random
discrete dopant reduces the RTN region area, resulting large
RTN magnitude. Although the formula tends to overestimate
the maximum RTN magnitude when Vd = 1.25 V as shown in
Fig. 7 (b), the linear relationship between the RTN magnitude
and the inverse of the RTN region area is still valid. More
elaborate definition of the RTN region would be required to
explain the RTN magnitude in the saturation region.
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Fig. 7. Maximum RTN magnitude as a function of the RTN region area. The
gate length Lg = 65nm and the gate width Wg = 100 nm. The open circles
indicate numerical simulation results of the statistical sample of 100 devices
considering discrete dopant effects. (a) Vd = 0.05V, (b) Vd = 1.25V.

Statistical distribution of 1/∆Vthmax simulated with dis-
crete dopant is Gaussian in both linear and saturation regions
as shown in Fig. 8, which is expected from the fact that
∆Vthmax is inversely proportional to Artn. If the surface
potential fluctuation is assumed to be a normally distributed
Gaussian[8], Artn and 1/∆Vthmax are Gaussian. Statistical
distribution of ∆Vthmax is, therefore, approximated by expo-
nential or log-normal distribution, because an upper tail of the
distribution of the inverse of a normally distributed Gaussian
variable is longer than a lower tail.
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Fig. 8. Cumulative distribution function of the inverse of the maximum RTN
magnitude. The gate length Lg = 65nm and the gate width Wg = 100 nm.

IV. CONCLUSION

The RTN magnitude was analyzed using three-dimensional
device simulation. The maximum RTN magnitude is inversely
proportional to the RTN region area. The RTN region is
defined using the saddle point of the surface potential. The
inverse of the maximum RTN magnitude exhibits a normal
distribution.
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