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Abstract—In this paper we show the effectiveness and power-
fulness of a pseudospectral method (PSM) with newly developed
bridge-functions, which ensure the continuity of physical quan-
tities, for the solution of the 3D Schrodinger equation, Poisson’s
equation, in addition, non-equilibrium Green’s function (NEGF)
on equal footing with high accuracy and negligible computational
overheads. By comparing with the results of the conventional
finite difference method (FDM) with same numbers of mesh,
the present method is found to be 60 times faster with higher
accuracy.

I. INTRODUCTION

Many applications of quantum mechanical phenomena in
nano-scaled devices require the solutions of the Schrédinger
equation, Poisson’s equation, and the non-equilibrium Green'’s
function (NEGF) which are usually performed numerically
with a finite difference method (FDM) or a finite element
method (FEM). However, as the dimension of the devices
becomes lower, e.g. double-gate MOSFETsS, gate-all-around
FETs, and quantum dot devices, which are comprised of
quantum wire structures or quantum dots, FDM or FEM
becomes inappropriate in terms of computational costs and
time. This is because the FDM/FEM, in general, requires many
mesh points to achieve high accuracy. To reduce the size of
the matrix and the computational time in the conventional
FDM, Ren et al. have used a mode space technique [1].
This technique is a kind of a separation of variables method
for the solution of partial differential equations, where the
Schrodinger equation is solved in the plane perpendicular
to the transport direction, then the subband energies and
eigenfunctions are calculated. The wave function is expanded
in the subbands and the resulting transport equation is simply
a one-dimensional equation.

On the other hand, pseudospectral method (PSM) [2], [3]
is known as an efficient numerical method alternative to FDM
and FEM. Conventional PSM expands the solution in certain
basis function series and computes expansion coefficients,
which gives both higher accuracy and more efficient con-
vergence. In spite of the efficiency, because of complicated
form of the basis functions, it has been quite difficult to
take boundary conditions into account, in particular, in the
case of the problems with materials being spatially varying.
We have developed a powerful method for the solution of
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those three equations on equal footing in order to implement
efficient quantum mechanical simulations of nanodevices. In
the present bridge-function pseudospectral method (BPSM),
we have combined a PSM with the ‘bridge functions’, which
naturally guarantee the continuity of such physical quantity
as probability current density and electrical flux density in
adjacent intervals even when the materials under consideration
are spatially varying. We have also adopted the mode space
expansion technique in the present calculation.

II. THEORY

Similar to the FEM, we expand any physical quantity in
terms of a set of local basis functions spanning a grid of
nodes 2° (= 0) < 2! < 2?2 < -+ < zl(= L) which
replaces the independent variable x, where L is a device
length and I is the total numbers of the nodal points in x
direction (see Fig. 1). The present BPSM is composed of the
bridge-functions, connections of two Lagrange polynomials
over adjacent elements or intervals, i.e. between ¢ and i + 1,
which are schematically illustrated in Fig. 2, and the Gauss-
Lobatto (GL) quadrature [5]. The continuity of electrical flux
density or probability current density, thus the electric current
density is naturally guaranteed, which enables us to take the
boundary conditions into account in much easier manner than
the conventional PSMs.
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Fig. 1. The device area under consideration [0, L] is divided into regions or
elements in the present BPSM. [ is the total numbers of the nodal points in x
direction, n the numbers of local basis functions and x?,’s the Gauss-Lobatto
points, respectively.

As mentioned, in the present PSM, the region under consid-
eration [0, L] is divided into sub-regions (: =0,1,---,I) and
each sub-region is spanned by a basis set: Lobbato shape
functions or Lagrange interpolation polynomials (m =
1,2,---,n) (see Fig. 2) [4]. The 1D orthonormal basis func-

-311-



tions are expressed as
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is the (n — 1)th order Lagrange interpolation polynomial. z¢ ,
w!  are the points and weights, respectively, in GL. quadrature
chosen to make Eq. (3) exact when g(z) is a polynomial of
degree < 2n — 3:
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The property that, in the GL quadrature, the integral is exact
up to the order of 2n — 3 for the (n — 1)th order polynomial
guarantees higher accuracy than conventional FDM/FEM.

In conventional PSMs, the sub-region is simply expanded
by orthonormal functions {fp/\/Wm}. One of the specific
features in the present method is to use the ’bridge function’
for the solution of all three differential equations. The bridge
function is comprised of the two functions f; , and fi111
in the adjacent regions to guarantee continuity of physical
quantity in adjacent intervals(Eq. (1) and Fig. 2 (xi,; and
X2,1))- By expanding the solution of each equation using these
basis functions x; ., the continuity of probability current den-
sity or density of electrical flux at each interface is naturally
guaranteed, which enables us to take the boundary conditions
into account in much easier manner than the conventional
PSMs.

g(z)dr = g(x
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Fig. 2. 1D basis functions x; () (I =3 and n = 3), where 4 indicates

the region, and m the basis. The solid lines are the bridge functions, which
ensure the continuity of any physical quantities between the adjacent regions.

In order to use the mode space expansion technique [1],
we solve the 2D Schrédinger equation perpendicular to the
transport direction (z). The time-independent Schrodinger
equation is written as

R 1
——V-|——=V | +U|yY=Ey 4
2 m*(r)
where m*(r) is the spatially varying effective mass, U the
hetero-junction potential, F/ the eigenenergy, i) the wave

function, respectively. In the 2D Schrddinger equation, the
wavefunction ¢ (y, z) is expanded as

ly,2) = D by 2k )Xy my (U)X m. (2)
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where ¢; ,,, is a function of the weights, and i = (iy,i.), m =
(my,m.), respectively. Now, we transform the equations
into the weak-form using the weight functions of weighted
residual method in the FEM [6] which are same as the basis
functions X%]?n = Xi,,m, (¥)Xi.,m.(2). The weak form of the
Schrédinger equation can be represented as

S ALP 4 Uk dmm b1 ] cimt> = Beimth,  (6)

i,m
where 6; # and 0y, s imply Kronecker’s delta, and ri =
(ymy , z}fLZ) respectively.

To take into account the potential distribution in the device,
we have to solve the Poisson’s equation self-consistently with
other equations. Poisson’s equation is written as

V- (e(r)V)p =

where €(r) is the dielectric constant, which varies depending
on the materials in consideration, ¢ (> 0) the electronic
charge, Np the donor density, ¢ the electro-static potential,
and n the electron concentration, respectively. In the 3D
Poisson’s equation, p(z,y, 2) is expanded as

Zcz mP (T

and the weak form can be represented as
2
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where i = (ig,iy,iz), M= (Mg,My,m.), T, = (a:m ,ymy ,z;sz)
and x3D = Xi, m. (£)Xi,.m, ) Xi.,m. (2), respectively. The
equation has been further transformed into a linear equation of
dp which is the minimal change of the electro-static potential,
since electron concentration n and the confinement potential
U, equivalently ¢ are mutually dependent.

Since the wave function in the transverse direction is

expanded in the subbands, the resulting transport equation
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is simply a one-dimensional equation and drain current is
calculated by NEGF. The retarded Green’s function is defined

as
Bd( 1 d
E . ) = el ! — _ !
+i04 { > T <m*(a:) dfc>+U} G(z,z")=0(z—2x"),
(10)
where G(x,x') is retarded Green’s function, 6(z—z') is the

delta function, respectively. In the same way as mentioned
previously, 1D retarded Green’s function is also expanded as

G(x,2') = cimG (@ )xim(x) (11)
and finally written as
S Ebii b — AL AP = 500 s Gk
b = Xt (@), (12)

where B | is the appropriate boundary self-energy which

m,m

replace the effect of the open boundary conditions or the
infinite electrodes. It can be expressed as

h2
~3 ik, (i=i'=1, m=m'=1:source)
my,
i’il = h2
mm ~3 ik (i=i'=I, m=m/=n: drain)
mr
0 (other),

(13)
where i is the imaginary unit and ky, /g is wavenumber of the
electron at source or drain electrode, respectively.

The matrix element Afn’ Tf,D in Eq. (9) is written as

i 3D
m,m’ ( 2 l7lli1*)x

/ 6Xi’,m’ BXi,m+6Xi’,m’ 6Xz,m aXi’,m’ aXz,m dr
r\ Oz L™ dy "ay 8z o

(14)

with the Kronecker’s delta representing the fact that bridge
function is only beyond adjacent intervals, ¢’ £ 1* = (i}, +

Lt it) or (if, i, +1,iL) or (il i, iL%1). AL 2> in Eq. (6)

z 'y x) 'y Yz m,m’
and Ai;flml,D in Eq. (12) are written similarly. 5 equals 1/m*
in the Sbhrédinger equation and NEGF or € in the Poisson’s
equation, respectively.
The integration of Eq. (14) is evaluated by the GL quadra-
ture which ensures the higher accuracy. For example, the first

term of the integration in Eq. (14) is evaluated as

Ase 2/// Xir me Xty mi Xit,mt Xiy ma Xiymy Xien. drdydz
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where X' = dy(z)/dx. Other terms can be similarly evaluated.

III. RESULT AND DISCUSSION

In order to show the superiority of the present method in
terms of accuracy and computational costs over conventional
FDM, we have applied the BPSM to the analysis of I-V
characteristics of a gate-all-around Si nano-wire MOSFET
(SiNW FET)(Fig. 3) [7], where Schrodinger-Poisson equations
and NEGF are solved simultaneously and self-consistently.
The orientation dependent effective masses in the conduction
band of Si [8] are also taken into account in the calculation.

Ltot

channel

Len=10.0 La=5.0

Fig. 3. Model structure of a SINW FET [7] under investigation. The channel
orientation is along (100).
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Fig. 4. Comparison of the relative errors of the first eigenstate between FDM
and BPSM as a function of total nodal numbers N.

Figure 4 shows the comparison of the errors of the first
eigenenergy obtained in both the FDM and BPSM as a
function of entire nodal numbers NN in the self-consistent
Schrodinger-Poisson calculations in the cross-section of the
SiNW FET. It should be noted that accuracy of calculated
result by the BPSM is much higher than that of the FDM
when N is comparable, in addition, the refinement rate of
accuracy with increase of N is much faster.

Figure 5 shows the comparison of the first subband profile
along the channel calculated by the FDM (solid lines, with
longitudinal nodal number N, = 32) with increasing the cross-
sectional nodal number IV, to that calculated by the BPSM
(dotted line, with N, = 32 and N,,. = 400 which are checked
to give enough accurate results). It is important to notice that
although the result of the FDM approaches that of the BPSM
as IN,. increases, there still exist errors between them, which
can be understood from Fig. 4, that is, poorer convergence
of the FDM in the transverse direction has resulted in the
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Fig. 5.  First subband profile along the channel at V3 = 0.2 V and
Vg = 0.4V, where the dotted line is obtained by the BPSM with N, = 400,
while solid lines are, for comparison, by the FDM increasing the cross-
sectional nodal number Ny. with the nodal numbers (N.) fixed in the
transport direction.

significant difference in the subband profile even though finer
mesh is adopted.
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Fig. 6. First subband profile along the channel, where the dotted line is
obtained by the BPSM with N, = 32, while solid lines are for comparison
by the FDM increasing the cross-sectional nodal number N, with Ny fixed.

Figure 6 also shows the comparison of the first subband
profile by the FDM with increasing N, to the BPSM (dotted
line). As seen in these figures, the subband profile is more
sensitive to N, than to IV,. This is because the eigenenergies
in the cross-sectional area (transverse direction) are sensitive
to the confinement potential or the carrier concentration dis-
tribution and the eigenenergy calculation by the FDM shows
the poorer results as shown in Fig. 4.

Figure 7 compares the Iy-V, characteristics between FDM
and BPSM when the nodal numbers are same (N, = 32 and
N,. = 400). The results show that there is a large difference
in the calculated drain current amounting as much as 18 %,
which may mislead to incorrect estimation of V4. The large
discrepancy arises from the fact, as can be understood from

Figs.4-6, that the FDM gives inaccurate eigenvalues in each
cross-section or inaccurate subband profiles along the channel
while the present BPSM gives more accurate results.

As far as the CPU time is concerned in the self-consistent
calculation on an Intel Xeon (2.3GHz) processor, the present
BPSM is found to show 60 times faster than the conventional
FDM. This is because the present BPSM requires fewer nodal
points than the FDM to attain desirable accuracy, specifically
in the eigenvalue calculation in the transverse direction.
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Fig. 7. Comparison of the I4-V; characteristics between FDM and BPSM
when the entire nodal numbers are same in each method.

IV. CONCLUSION

We have presented the superiority of the proposed BPSM
over the conventional FDM. The capability of the present
method is essentially due to the implementation of the bridge-
functions into a conventional PSM with the Gauss-Lobatto
quadrature which preserves the computational accuracy and
continuity of physical quantities, thus preventing complexity
of matrix elements and convergence issues. Further refinement
in accuracy of the calculation and reduction of computational
costs can be achieved by the usage of an adaptive mesh
generation. Since Schrddinger equation, Poisson’s equation,
and NEGF are commonly used and quite versatile for quantum
mechanical device simulation, the capability of the present
BPSM can be universally applied not only to the SiNW
FET model but also to any other quantum mechanical device
simulations.
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