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Abstract— It has been shown that sub 100nm SRAM is 
particularly sensitive to stochastic device variability. In this 
paper we consider two correlated figures of merit for SRAM, 
Static Noise Margin (SNM) and Read Current. For the purposes 
of this paper 1,000 3D atomistic simulations of microscopically 
different 25nm P and N bulk MOSFETs were performed, and 
statistical compact models were then extracted for each device. 
Using these models simulations are performed to calculate the 
SNM and Read Current distributions of SRAM cells constructed 
using devices from the device ensemble. Variability in device 
performance has been then introduced via Gaussian or skewed 
Gaussian threshold voltages (Vt) and by using values of Vt 
extracted directly from the individual device compact models and 
the results of these simulations are then compared to the baseline 
simulations using fully extracted models. The results clearly 
demonstrate the errors that can be introduced in the estimation 
of SNM and Read Current distribution of a 6T SRAM cell when 
statistical device variability is not correctly modelled. 
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I.  INTRODUCTION 
Modern silicon design is complicated by the presence of 

statistical MOSFET variability, a problem which has been 
highlighted in both industry[1] and academia[2]. Exacerbated by 
the continuous drive toward reducing device sizes, stochastic 
statistical variability results from the discreteness of charge and 
granularity of matter. Dominant stochastic variability sources 
include random discrete dopants (RDD)[3], line edge roughness 
(LER)[4] and polysilicon (PSG)[5] and metal gate (MGG) 
granularity. Statistical variability introduces random 
differences in the behaviour of technologically ideal devices. 
Recently, it has been demonstrated that in contemporary 
CMOS technology the level of statistical variability is 
overtaking that of process variability[6].  

A significant portion of the chip area in modern SoC 
applications is occupied by SRAM, and its dependence on 
minimal width transistors leaves SRAM acutely sensitive to 
random statistical variability. The huge number of SRAM cells 
in modern memory arrays provides a strong motivation to 
simulate SRAM performance with statistical confidence greater 
than 5 sigma. Two traditional figures of merit, used to 
determine the functionality and yield of an SRAM design, are 

the static noise margin (SNM)[7] and read current. SNM 
provides a measure of the stability of a cell and read current is 
a measure of the limiting readability of the cell given a stored 
0. In a successful SRAM design there is a trade-off between 
cell stability (SNM) and read current which can only be 
accurately assessed in the presence of variability via 
simulation.  

It has been shown that in sub 100nm technologies statistical 
variability has a significant impact on SRAM SNM, yield and 
performance[8], and it is clear that this must be factored into the 
SRAM design process. Techniques have been proposed to 
model the effects of variability on SNM and read current, 
however these are generally limited to including only the 
variability of the threshold voltage [9][10]. In order to determine 
the impact of variability over the full current-voltage 
characteristics of devices e.g. including the impact on on-
current, off-current and transconductance, we compare 
statistical SRAM SNM and read current simulations performed 
with statistically extracted BSIM4 models, which accurately 
capture the complete range of variable device behaviour, and 
compare these to simulations where only threshold voltage 
variability in various guises is considered. 

II. METHODOLOGY 

A. Compact Model Extraction 

 
Figure 1.  Id-Vg transfer charactesistics for NMOS at high drain condition 
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Figure 2.  Average Percentage Relative Error for NMOS and PMOS 1000 

model extraction 

 
Figure 3.  On current (left) and off current (right) comparison between device 

simulation and extracted compact model 

Using the atomistic 3D simulator Garand[11] the transfer 
characteristics (Id-Vg) of an ensemble of 1000 p- and n-, 25nm 
channel length devices was simulated[12] including the effects 
of variability due to RDD, LER and MGG. An example of the 
simulated device and the corresponding statistical transfer 
characteristics is shown in figure 1. For each device in the 
ensemble a compact model is then extracted as described by 
Cheng et al.[13] using the Mystic statistical compact model 
extraction tool[11]. This is a two-stage process. First a nominal 
compact model based on a ‘uniform’ device  - containing no 
sources of variability - is extracted. Then, based on a detailed 
sensitivity analysis, a subset of the standard BSIM4 parameters 
is chosen (in this case 6 parameters) which are then used to 
model the impact of variability on individual instances of the 
device. It is important to accurately capture the characteristics 
of each device in the statistical compact models in order ensure 
the accuracy of baseline circuit simulations against which the 
accuracy of approximate methods can be judged. 

Figure 2 shows the distribution, for both the extracted 
PMOS and NMOS compact models, of the average percentage 
relative error over all Id-Vg curves when compared to the 
simulated device characteristics. It is important to ensure that 
the baseline statistical compact model ensemble accurately 

reproduces the distribution of important figures of merit for the 
simulated device ensemble. Figures 3(left) and 3(right) show a 
comparison of the on and off current distribution obtained from 
statistical compact modelling and 3D Drift Diffusion 
simulation for the NMOS device at high drain bias. Accurate 1-
to-1 correlation between device on/off current and extracted 
compact model on/off current is denoted by the straight line at 
45 degrees. For the device ensemble, the average error, 
calculated over multiple Id-Vg characteristics at different drain 
biases, introduced by compact model extraction is ~2.6% for 
the NMOS and ~2.4% for PMOS devices. An additional 
compact model is extracted from the ensemble average device 
behaviour to serve as the baseline device model for simulations 
where only Vt variation is considered. This corrects for the fact 
that, due to Vt lowering from the effect of RDD, the behaviour 
of an idealised uniform device obtained from TCAD is not the 
same as the average behaviour of an ensemble of variable 
devices, and allows a more accurate comparison of the two 
simulation methods. 

B. SNM/Read Current Simulation 
The simulation configuration and calculation method for 

SNM can be seen in figure 4. In the following results 50,000 
SNM and 10,000 read current values were obtained using the 
average performance compact model and threshold variability 
is introduced by varying the BSIM4 VTH0 parameter. VTH0 
values for individual devices are generated from Gaussian and 
skewed Gaussian distributions and by using the values of 
VTH0 extracted directly from the statistical compact model 
ensemble. The baseline set of simulations, performed using the 
full compact models extracted from the device ensembles, 
accurately capture the effect of variability over the whole range 
of device operation. These simulations are considered to be the 
“gold standard” against which a comparison of the errors 
introduced by VTH0-only methodologies can be tested. 

 
Figure 4.  SNM Simulation Setup and Calculation 

In order to reduce simulation time, the simulations were 
performed in parallel on a High Performance Compute (HPC) 
cluster, facilitated by using the Gold Standard Simulations 
Push-button cluster technology. All circuit simulation was 
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performed using the RandomSpice[14]  statistical circuit 
simulation toolkit.  

III. RESULTS 

A. Gaussian and Skew-Gaussian Vth 
Initial simulations were performed where variability is 

introduced via Gaussian distributed threshold voltage 
variability, where the mean and standard deviation of the 
distribution are the same as that obtained from full compact 
model extraction. In order to assess the impact of Vt skew on 
read current, further simulations were performed with skewed 
Gaussian distribution where the skew of the distribution is 
varied from -0.5 to 0.5 and the same mean and standard 
deviation are used.  

 
Figure 5.  Read Current Distribution (left) and SNM distribution (right) at 

different amounts of threshold voltage skew 

TABLE I.  SIMULATED READ CURRENT DISTRIBUTION MOMENTS 

 -0.5 -0.3 -0.1 0.0 0.1 0.3 0.5 
Mean 25.50 25.05 24.39 22.90 21.30 20.67 20.20 

Std Dev 2.345 2.493 2.335 2.370 2.343 2.370 2.379 
Skew 0.38 0.23 0.04 0.05 0.09 0.35 0.46 

 

TABLE II.  SIMULATED SNM DISTRIBUTION MOMENTS 

 -0.5 -0.3 -0.1 0.0 0.1 0.3 0.5 
Mean 0.122 0.129 0.137 0.156 0.173 0.180 0.185 

Std Dev 0.037 0.037 0.035 0.035 0.037 0.036 0.036 
Skew -0.70 -0.64 -0.48 -0.47 -0.47 -0.41 -0.38 

 

The resulting SNM and Read Current distributions are 
shown in Figures 5 (left) and 5 (right). It is apparent that Vt 
skew causes a shift in the mean and skewness of the final SNM 
and Read Current distributions, the this is more clearly shown 
in tables 1 and 2. Gaussian Vt variability produces a Gaussian 
distribution of read current, This indicates that simulation 
methodologies based on the assumption of Gaussian 
distributions of these figures of merit could introduce large 
errors especially in the tails of the distribution if the true 
distribution of device Vt is non-normal. It is interesting to note 
that the distribution of the SNM is always negatively skewed, 
even in the case where the underlying Vt distribution is 
positively skewed. This is due to the Min operation performed 
during the SNM calculation. This negative skew of static noise 
margin is important as it leads to the conclusion that in order to 
estimate SRAM yield with respect to SNM, we must accurately 

determine higher moments of the SNM distribution and not 
simply the mean and standard deviation. 

As expected the effect on SNM and Read Current is anti-
correlated as these two figures of merit define opposing effects 
- SNM is a measure of the ability to hold data, and Read 
Current is a measure of the ability to read data 

B. Extracted Vth and Full Compact Model 
Simulations were then performed using fully extracted 

compact models, and models where the average device mode is 
modified by using the values of VTH0 obtained from the 
extracted models. This provides an accurate distribution of Vt 
and allows the assessment of the impact of variability in other 
device figures of merit, since the fully extracted models 
incorporate the impact of variability on Vt, DIBL, on-current 
and off-current. 

 
Figure 6.  Read Current Distribution with different compact model variability 

injection approaches 

The resulting SNM and read current distributions are shown 
in figures 6 (Read Current) and 7 (Static Noise Margin). SNM 
and read current simulations with threshold voltage variability 
capture the mean of the resultant distribution well, but badly 
underestimate the standard deviation and the skew or the 
resultant distribution when compared to the more accurate full 
compact model simulations, as illustrated by the data in table 3. 

TABLE III.  SIMULATED READ CURRENT DISTRIBUTION MOMENTS 

 Full Models Extracted Vt Gaussian Vt 
Mean 22.98 22.48 22.90 

Std Dev 2.58 2.31 2.37 
Skewness -0.0188 0.139 0.0494 
 

It is worrying to note that, using the extracted distribution 
in both read current and SNM simulations, introducing 
variability via Vt alone does not accurately capture the correct 
distribution of the output values. This effect is clearly visible 
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when one considers yield. Figure 7 shows the fail count 
(measured in parts per billion (PPB)) for a simulated SRAM 
cell when one considers its SNM. Using a 3.5 sigma cutoff as 
an example, it is clear that Gaussian Vt simulations significantly 
overestimate yield, predicting only ~880,000 PPB failures, 
while extracted Vt simulations underestimate yield predicting 
~2,260,000 PPB failures, compared to the full compact model 
simulations which predict ~1,440,000 PPB failures. 

 
Figure 7.  SNM Fail count predictions with different injection approaches 

and full distribution QQ plots (inset) 

This data leads to the conclusion that any Monte-Carlo or 
statistically enhanced SRAM simulation methodologies used to 
determine SRAM performance at 4σ or greater, will produce 
inaccurate results if only variability in Vt is considered. Even in 
the case where a more accurate non-Gaussian distribution of Vt 
is used to model this effect the result of simulations do not 
provide realistic values. These problems are most pertinent 
when attempting to estimate the yield of SRAM, and when one 
attempts to optimize a design based on figures of merit. For 
these evaluations we rely on accurate distributions of the 
figures of merit of the SRAM cell. If the shape, and therefore, 
tails of these distributions are incorrect, large errors can be 
introduced leading to inefficient optimization, over/under 
design and overall design failure. 

IV. CONCLUSIONS 
In modern SRAM design where it is necessary to simulate 

parameter distributions to ±5 sigma in order to detect possibly 
fatal fail states and determine the correct yield of a design, 
simulations based on Vt variability alone are not sufficiently 
accurate. Vt only simulations underestimate the complexity of 
the SRAM figures of merit and could lead to under/overdesign. 
More advanced simulation methods, which accurately 
reproduce the statistical device behavior, including accurate 
statistical compact model extraction strategies, such as those 
described in this paper, are required. 
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