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Abstract
The Schrödinger equation, or the coupled Schrödinger and

Poisson equations, are transformed into an integral equa-

tion. Back-substituting from the original equations allows

one to approximate the numerical corrections to any order

without the need of calculating derivatives of the unknown

function of order larger than one. Typical applications are

in the numerical analysis of quantum transport in nanowires

and nanotubes in the ballistic regime.

Coupled Schrödinger-Poisson Equations
In the full-quantum analysis of ballistic transport in

cylindrical-nanowire (CNW) and carbon-nanotube (CNT)

transistors, the problem is often solved by decoupling the

Schrödinger equation along the radial (r) and logitudinal

(z) coordinate [1]. After discretizing the latter from the

source (z = 0) to the drain (z = L) end of the channel, the

Schrödinger equation is solved over the transverse section at

each grid node zi. Being this a closed-boundary problem, it

yields a set of eigenvalues that provide the ground energies

of the subbands for the longitudinal problem. The latter

is then tackled by solving the longitudinal Schrödinger

equation with open-boundary conditions (this is also called

quantum-transmitting boundary method, QTBM). In this

part of the solution the total energy E of the electron may

take any value within each subband. For the electrons that

are injected from the source (drain) into the channel the

weight of each E is prescribed by the Fermi statistics f
and the density of states g of the source (drain) lead.

The solution of the Schrödinger equation in the silicon

CNW is based upon the parabolic-band approximation. It

is assumed that the longitudinal coordinate z corresponds

to the [001] crystallographic direction and that the two

valleys aligned with such direction have the indexes 3 and

6. As the valley of index 3 is centered at (0, 0, k30) it is

convenient to use for the wave function the replacement

ψ ← ψ exp(−jk30z). This centers the valley at the origin.

Using the cylindrical coordinates one finds for the kinetic

part of the Hamiltonian,
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where ϕ is the angular coordinate and mt, ml the transver-

sal and longitudinal mass, respectively. A similar expression

holds for T6. If the potential energy U were independent of

ϕ, then the Hamiltonian H3 = T3+U would be rotationally

invariant. The situation is different for the other valleys.

For instance, assuming that the two valleys aligned with

the [100] crystallographic direction have the indexes 1 and

4 one finds
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with c1 = cos2(ϕ)/ml + sin2(ϕ)/mt, c2 = cos2(ϕ)/mt +
sin2(ϕ)/ml, c3 = (1/ml − 1/mt) sin(2ϕ). The above

shows that the kinetic part T1 (T4) of the Hamiltonian

H1 (H4) has a periodicity of π. The kinetic part of the

Hamiltonian for the other two valleys is derived from (2)

by interchanging ml and mt or, equivalently, by replacing

ϕ with ϕ+π/2. Hence the periodicity of T2, T5 is the same

as that of T1, T4.

The potential energy U that appears in the Schrödinger

equation is initially taken from a classical solution, and

is then updated by feeding the charge density back into the

Poisson equation ∇2U = q�/ε. Specifically, after solving

the Schrödinger equation, the charge density � at each

section is calculated from the electron concentration ne =
nS(r, z) + nD(r, z), where the suffixes refer to the source

and drain leads, respectively. Only the contribution of the

electrons is considered because the material is intrinsic and

the hole concentration is negligible in the typical operating

regimes. The procedure is iterated until self-consistency is

reached.

The electron concentration is calculated from the wave

functions derived from the Hamiltonians discussed earlier.

As the Hamiltonians are periodical in ϕ, the potential

energy retains such periodicity. This implies that the an-

gular coordinate ϕ enters the self-consistent solution of the

Schrödinger-Poisson system. To avoid the complicacy the

approximation used in [1] is adopted here, namely, that of

averaging the coefficients c1, c2, c3 over ϕ. This yields

c1, c2 ← 1/ma
.= (ml +mt)/(2mlmt), c3 ← 0. As a con-

sequence the wave function retains a dependence on ϕ only

through the factor exp(jμϕ), with μ = 0,±1,±2 . . ., and

the term containing the ϕ-derivative in (1,2) is transformed

as
1
r2

∂2ψ
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← −μ2

r2
ψ . (3)

The variables are then scaled, namely, r ←
√

mt/m r,

z ←
√

ml/m z in valleys 3 and 6, while in the remaining

valleys r ←
√

ma/m r, z ←
√

mt/m z, with m the mass
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of the free electron. In this way the kinetic part of the

Hamiltonian becomes isotropic and identical for all valleys.

In turn, due to the variable scaling, the potential energy

changes from a valley to another, U ← Us. The problem is

thus reduced to solving the same differential equation using

different data. The solution domain is a rectangle of sides

Ls, Rs, that are the scaled version of the original source-

drain distance L and radius R of the device. The radius

includes the conductive channel and gate insulator.

Factorization of the Eigenfunctions

The solution of the Poisson equation is tackled as a fully

two-dimensional problem, in which the electric potential

−U/q is prescribed in the gate contact. Homogeneous Neu-

mann conditions are used along the remaining boundaries.

From the numerical standpoint the solution is achieved

by discretizing the equation over a tensor-product grid

superimposed to the solution domain. The potential energy

found by solving the Poisson equation is not separable

in general. Due to this, the solution of the Schrödinger

equation is tackled by recasting the latter into a system

of two coupled equations. The procedure is the same as

in the Born-Oppenheimer theory and is based upon the

factorization ψ exp(−jμϕ) = χ(r, z) w(z), where χ, w
are solutions of

Hμs(z) χnμs = ηnμs(z)χnμs , (4)

[
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wknμs = Eknμswknμs , (5)

respectively, with Vnμs(z) .= ηnμs(z) + ωnμs(z) and
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Eq. (4) is solved at each section z of the device, in practice

at each discretization point zi in the longitudinal direction.

Index n derives from the quantization in the radial direction

whereas index s counts the valleys. After ηnμs, ωnμs are

found as functions of z for each triplet n, μ, s, they are used

to build-up the potential energy in (5). Besides the inherited

indices n, μ, s, the eigenvalues of (5) depend on the index

k, which is continuous because the equation refers to an

open-boundary problem. It is useful to note that, due to

the application of the scaling factors to the coordinates, the

indices n and k turn out to be scaled by the inverse factor

of r and z, respectively.

The density of states gnμs(E) is found from the dispersion

relation Eknμs = Enμs(k). It follows that the dependence

on k of the eigenfunctions w is transformed into a depen-

dence on E. In the source and drain leads the potential

energy Us is independent of z, whence ηnμs = const,

ωnμs = 0, wknμs ∝ exp(jkz), Enμs(k) = ηnμs +
�

2k2/2m. As a consequence gnμs ∝ (E − ηnμs)−1/2. The

calculation of the density of states in the channel is more

involved and must be carried out numerically.
The electron concentration ne is finally calculated by

adding up the contributions from the different eigenfunc-

tions. The concentration due to the electrons injected from

the source is

nS(r, z) =
∑
nμs

|χnμs|2
∫ ∞

ηS
nμs

|wS
nμs|2gS

nμsf dE , (8)

with f = f(E) the Fermi statistics. The apex S in (8)

reminds that for matching the boundary conditions of w in

(5) one assumes that the electron is injected from the source

(more details are given below). An expression similar to

(8) holds for nD. As mentioned earlier, the charge density

� = −qne is used to solve the Poisson equation in two

dimensions, and the electric potential thus found is fed back

into the Schrödinger equation. The procedure is iterated

until convergence is reached.
As far as the numerical load is concerned, the calculation

of the charge density � depicted above is by far the most

demanding part of the procedure. It is therefore useful to in-

vestigate methods able to solve the whole problem without

the need of calculating � in an exceedingly high number of

sections. For this reason we concentrate on the longitudinal

part (5) of the Schrödinger equation. Dropping the indices

for the sake of simplicity, letting b(z) = 2m (E − V )/�
2,

and using primes to indicate the derivatives, the equation

becomes w′′ + bw = 0.
As mentioned above, the latter is tackled by QTBM. This

may lead to instability and possible lack of convergence.

It will be shown here that the accuracy of the solution

method is improved by converting (5) into an integral

equation. Besides exploiting the smoothing property of the

integral, the method increases the order of the solution.

This is achieved without the need of involving extra nodes

of the discretization grid but those belonging to the element

under consideration. As a consequence, the method can be

implemented into standard simulation codes leaving their

structure unchanged.
Before entering into the details it is convenient to discuss

the boundary conditions of the longitudinal equation (5).

In fact, its solution w in the interval [0, Ls] must be

matched with the solutions in the leads. Considering, e.g.,

the electrons injected from the source at some energy

E = η + �
2k2

S/(2m), the solutions in the leads have

the form a1 exp(jkSz) + a2 exp(−jkSz) for z ≤ 0, and

a5 exp(jkDz) for z ≥ Ls. In general it is kD �= kS because

of the bias applied between the source and drain leads.

The constancy of the density of probability flux yields

R+T = 1, where R = |a2/a1|2 is the reflection coefficient

and T = (kD/kS) |a5/a1|2 the transmission coefficient.
The matching of the boundary conditions requires that w
and w′ are known at 0 and Ls, which is not true in general.

The problem is overcome by considering, instead of w, two

fundamental solutions u, v of w′′ + bw = 0. Letting

w = a3u + a4v , (9)
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with a3, a4 undetermined coefficients, and using the bound-

ary conditions u0 = u(0), u′
0 = 0, v0 = 0, v′0 = 1/u0, the

solution of the equations u′′ + bu = 0 and v′′ + bv = 0 is

fully determined. From this, one calculates us = u(Ls),
u′

s = u′(Ls), vs = v(Ls), v′s = v′(Ls). It is worth

noting that in order to determine the above values it is

not necessary to actually solve both equations for u and

v, because v can be reconstructed from u. Finally, the

elimination of a3, a4 by the matching of the boundary

conditions yields the transmission coefficient

T =
[
1
2

+
(u′

s)
2 + (kDus)2

4u2
0kSkD

+
(v′s)

2 + (kDvs)2

4kD/(u2
0kS)

]−1

.

(10)

It is known from the theory that the fundamental solutions

u, v are proportional to u0 and 1/u0, respectively. As a con-

sequence u0 can be chosen arbitrarily, and the expression

(10) is fully general. The coefficient a1 of the injected wave

can be chosen arbitrarily as well, so that the matching of

the boundary conditions provides also the expressions for

a3, a4 in terms of a1. One finds the relations

u0a3

a1
=

kSkDu0vs + jkSu0v
′
s

D/2
, (11)

a4

u0a1
=

jkSu′
s/u0 − kSkDus/u0

D/2
, (12)

with D
.= kSkDu0vs − u′

s/u0 + j(kSu0v
′
s + kDus/u0).

Thanks to this, the solution in the interval [0, Ls] is even-

tually determined through (9) as

w

a1
=

u0a3

a1

u

u0
+

a4

u0a1
u0v . (13)

Solution by Integral Equations
As mentioned above it is sufficient to tackle only the first

fundamental solution u. Taking any node zi as origin,

and considering the grid element hi+1 = zi+1 − zi, the

Schrödinger equation to be solved has the form u′′+bu = 0.

The integral-form solution is

ui+1 = ui + u′
ihi+1 +

∫ zi+1

zi

(z − zi+1) bu dz . (14)

The integral in (14) is the correction to be approximated

numerically. It is calculated by expanding bu into a Taylor

series around zi. Back-substituting from the original equa-

tion, the expansion can be carried out to any order without

introducing derivatives of u of order higher than the first.

For instance, the coefficient of the third-order term of the

expansion reads [(b′′′i −4b′ibi)ui+(3b′′i −b2
i )u

′
i]/6. It follows

that the practical issue here is the accuracy with which the

derivatives of b are calculated. In any case, if the expansion

of bu is truncated to order λ, it is seen by inspection that the

integral in (14) is accurate to the (λ + 2)th power of hi+1.

The two-order gain is intrinsic to the double integration

that brings the original differential equation to the form

(14). No matter where the truncation occurs, to calculate

the integral in (14) it is necessary to know only ui and u′
i,

so the values of the unknown at other grid nodes are not

involved. The derivative of u that is necessary to proceed

from the (i + 1)th to the (i + 2)th element in (14) is given

by u′
i+1 = u′

i −
∫

bu dz, which is accurate to the (λ + 1)th
power of hi+1.

From the practical standpoint one notes that at the time of

solving the Schrödinger equation the function b is known.

In fact it is available from the solution of the transversal

equation (4) carried out at each grid node zi at the begin-

ning of each iteration step. Truncating, e.g., to the second

order the expansion of bu yields a fourth-order accuracy,

representing a fair improvement over the standard finite-

difference or box-integration methods, which are second-

order accurate. This is reached at no additional cost and

without the necessity of separating the Poisson equation,

which in fact is solved in two dimensions.

The method depicted here may further be extended when

the coefficient b(z) of the Schrödinger equation is derivable

from a one-dimensional Poisson equation b′′ + σ = 0. The

integral form of the latter is

b(z) = bi + b′i(z − zi) +
∫ z

zi

(ζ − z) σ dζ . (15)

Typically the boundary conditions for the Poisson equation

are prescribed on b at the channel ends. Because of this it

is necessary to preliminarily determine b′0 from b(Ls) =
b0 + b′0Ls +

∫ Ls

0
(ζ − Ls) σ dζ. As noted earlier, when

(14) and (15) are tackled the charge density is known at

each node from the previous iteration. Thus, a polynomial

interpolation can be used for calculating σ(ζ) in (15). The

simplest one involves only the nodes of element hi+1, viz.,

σ = σi + σ′
i(ζ − zi) which makes b(z) a third-degree

polynomial. Using more interpolating nodes would provide

a higher degree. Remembering the discussion above, thanks

to the analytical form of b the expansion for calculating the

integral in (14) can be carried out to any order using ui

and ui+1 only. In the examples shown below a third-order

expansion is used for both b and u.

Results and Conclusion
As a first model problem we choose a solution exhibiting

a near divergence at the drain end of the channel, namely,

w = 1−log[(1−z)/(1+z)]. For simplicity a scaled variable

is used here, such that the source and drain ends are at

z = 0 and z = 1 − ε < 1, respectively. The separability of

the Poisson equation is also assumed, so that the analytical

form of σ is derived from σ = d2(w′′/w)/dz2. After

calculating the boundary conditions for w and b at the

source, the open integration from source to drain is carried

out several times using coarser and coarser grids with

uniform node spacing. The accuracy is monitored at the

drain end where, as expected, the error is the largest. The

relative error of the method proposed here is compared with

that of the standard Box-Integration Method (BIM) in Table

I, where the relative errors at z = 1 − ε are compared for

different grid sizes.

309



TABLE I

ε = 0.1, w(1 − ε) = 3.94 Relative error

Number of nodes N BIM This work

500 1.0 × 10−3 2.8 × 10−6

200 2.4 × 10−3 1.6 × 10−5

100 4.5 × 10−3 5.4 × 10−5

50 8.1 × 10−3 1.6 × 10−4

20 1.5 × 10−2 3.6 × 10−4

TABLE II

w(1) = 1 Relative error

N ν BIM This work

500 1 7.8 × 10−5 1.4 × 10−11

500 4 1.1 × 10−3 5.5 × 10−8

500 16 1.6 × 10−2 2.2 × 10−4

50 1 6.9 × 10−3 1.2 × 10−6

50 4 3.2 × 10−2 4.5 × 10−3

As a second model problem we choose an oscillating

solution w = cos(2πνz) whose oscillations are made

sharper by increasing the spatial frequency ν. The source

and drain ends are at z = 0 and z = 1, respectively. No

separability of the Poisson equation is assumed here, so

the coefficient of the Schrodinger equation is prescribed

directly as b = (2πν)2. The procedure is similar to that of

the first model problem. The open integration from source

to drain is carried out several times changing both the

grid coarseness and spatial frequency, and the accuracy is

monitored at the drain end. The relative error of the method

is compared with that of the Box-Integration Method (BIM)

in Table II, where the relative errors at z = 1 are compared

for different grid sizes.

In conclusion, the method illustrated in this paper improves

the accuracy of the solution of the Schrödinger equation,

or of the coupled solution of the Schrödinger and Poisson

equations, when a one-dimensional approximation is ap-

plicable. The improvement is achieved without the need of

extra calculations of the charge density which, as illustrated

above, is typically the heaviest part of the computation. On

the other hand, the better accuracy on the longitudinal wave

function improves also the calculation of the charge density,

thus positively influencing the number of global iterations.
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