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Abstract—Chalcogenide GST materials can suitably be ex-
ploited for manufacturing phase-change memory devices. In this
paper a transport model for the amorphous phase of GST
is investigated, based on the variable-range hopping model.
The model is implemented into a Monte Carlo current-driven
simulation of a test device made of a layer of amorphous
Ge2Sb2Te5 in contact with two planar metallic electrodes. The
mechanisms governing electron transport within the device are
discussed in relation to the variation of physical parameters, such
as operating current, trap density, and coupling with the electric
field inside the device.

I. INTRODUCTION

Chalcogenide materials can suitably be exploited for man-
ufacturing phase-change memory devices. Among them, the
Ge2Sb2Te5 (GST) compound has been identified as the most
interesting material for industrial applications. Crystalline GST
exhibits an almost Ohmic I(V ) curve; in contrast, amorphous
GST (a-GST) shows a high resistance at low biases while,
above a threshold voltage, a transition takes place from a
highly resistive to a conductive state, characterized by a swift
rise of the current along with a voltage snap back [1]. A clear
and correct understanding of the threshold behavior of the
amorphous phase is of the utmost importance for exploiting
GST in the fabrication of innovative nonvolatile memories.

Experimental structural data and first-principle studies [2],
[3] proved that amorphous chalcogenides are characterized by
a large concentration of localized states. On the microscopic
scale these states arise from structural defects of different
nature, such as dangling bonds and vacancies, and they play
the role of either donor- or acceptor-like traps. This picture
suggests that an appropriate model for electric conduction in
chalcogenides must rely on a trap-controlled transport pro-
cess [4], [5], or, alternatively, on the generation-recombination
mechanism via localized states [1].

II. THE PHYSICAL MODEL

Our transport model is based on the generalization of the
variable-range hopping theory (VRH). We assume here that

a number of donor-like traps exist in the a-GST region and
carriers can hop among them by tunneling.

Traps are positioned at random inside the a-GST. An
energy-level, randomly chosen within a narrow band of width
ΔE centered at the Fermi level, is attributed to each trap. The
latter can host only one carrier at a time and is neutral when
it is filled by an electron or it is positively charged when it is
empty. In order to guarantee the electrical neutrality a number
of acceptor states, always filled by carriers and not involved
in the transport process, are also considered.

This scheme has been implemented by means of Monte
Carlo simulations for a 3D device made of an a-GST layer
sandwiched between two metallic contacts. These contacts are
mimicked by two infinite “reservoirs” of carriers and empty
states placed at the two opposite sides of the GST region. The
reservoirs can provide electrons to be injected into the traps of
the GST or host electrons coming from the GST at any time.
The test device is sketched in Fig. 1.

Fig. 1. Sketch of the device used in simulations. Electrons are injected into
the right contact.

The transition rate Sij for a carrier’s hopping from an
occupied site i to an empty site j is evaluated according to
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the VRH theory [6]:

Sij =

⎧⎪⎪⎨
⎪⎪⎩

ν0 Tij exp
[
−Δεij

kBT

]
if Δεij > 0

ν0 Tij if Δεij ≤ 0

. (1)

Here, ν0 is the attempt-to-escape frequency, Tij(Rij) is the
transmission coefficient of the potential barrier between the
sites i and j separated by the distance Rij ; Δεij = εj +eϕj −
εi−eϕi indicates the energy difference between the initial and
final states, εi and εj being the intrinsic energy levels of traps
i and j, and ϕi and ϕj are the values of the electric potential
at the two sites. The transmission coefficient Tij is related to
the height of the potential barrier confining the carrier in the
trap region.

In the original formulation [7], the energy barrrier between
scattering centers does not depend on the electric field. How-
ever, this is clearly not realistic for the case at hand, where the
electrostatic potential produces a non negligible variation of
the energy barrier between two sites. Thus, Tij is calculated as
proportional to the overlap integral of two exponential tails of
the electron wave functions in the barrier region, and results
to be: Tij ∝ e−2αRij where

α2 = α2
0 −

m0eβ

h̄2 |ϕi − ϕj |, (2)

m0 and β being the electron mass and a phenomenological
parameter, respectively.

As reported above, the parameters contained in the model
are linked to some properties of the material under investiga-
tion, and the sensitivity of the device on these parameters can
be tested by means of appropriate numerical analyses that are
presented in section IV-B.

III. MONTE CARLO IMPLEMENTATION

In order to investigate an S-shaped current-voltage char-
acteristics, the standard voltage-driven Monte Carlo frame-
work has been modified into a current-driven procedure.
Specifically, the implemented Monte Carlo procedure can be
summarized as follows:

1) Fill in the traps according to the equilibrium Fermi
distribution. Set both the simulation time ts and injection
electron time tI to zero.

2) Add an electron to the right contact and update tI by
ΔtI = e/I (e and I being the electron charge and the
prescribed current, respectively).

3) Evaluate the potential profile at each trap (or con-
tact) site, and the voltage drop across the device, self-
consistently with the actual trap-occupancy configura-
tion.

4) Compute the transition rate for the any possible hopping
process Sij . The total hopping probability is evaluated
as STOT =

∑
i Si, Si =

∑
j Sij .

5) Generate a uniform random number r in order to update
the simulation time of Δt = −ln r/STOT . Check the
new time: if ts+Δt > tI , the simulation time is set back

to tI and the procedure is cycled from step 2 without
performing any further action, otherwise update ts and
go to the next step.

6) The starting trap i is chosen according to the probabili-
ties Si and, subsequently, the arriving trap j is selected
according to Sij . Contacts are considered as additional
traps.

7) Perform the transition and update the trap-occupancy
configuration; then if ts < tmax cycle from step 3.

The computation of the potential profile inside the device
deserves care in order to preserve the correctness of the
boundary conditions at the two metallic surfaces. The problem
should be tackled and solved by the finite-element method.
However, this approach is extremely demanding in terms
of computational resources and has been replaced by an
approximated quasi-3D electrostatic model. By means of the
latter, trap-to-trap transition rates are evaluated considering
charged traps like 3D point-like Coulomb centers, whereas
for transition rates involving a contact, the trap potential is
modelled as that of a charge sheet placed at the trap position
and parallel to the contact, with total charge equal to the
trap charge. Even though this approximation reduces the trap-
electrode interaction to a 1D problem, the correctness of the
bondary conditions at electrodes still holds true.

IV. NUMERICAL RESULTS

A. Interpretation of the snap-back effect

The model presented above has been applied to a 3D
region of a-GST (cross section σ = 270 nm2 and length
� = 27 nm) sandwiched between two planar electrodes, and
the corresponding current density vs. voltage characteristics
J(V ) has been compared to the experimental data [4]. Results
are shown in Fig. 2; output values have been obtained as
averages over 192 independent simulations to take into account
statistical uncertainty. The simulation time in each step lasted
from 0.1 to 1 ns depending upon the prescribed current, and it
was adapted step-by-step to ensure that the stationary voltage
values were reached within a variance of 2 · 10−3 V.
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Fig. 2. Measured and simulated current density-voltage curves. Parameters
used in the Monte Carlo simulation are: Nt = 1.485 · 1019 cm−3, ΔE =
0.05 eV, ν0 = 1.35 · 1013 s−1, α0 = 4.54 · 106 cm−1 and β = 1/20.
Experimental data are taken from [4].
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The simulated current-voltage characteristics shows the S-
shape typical of the a-GST and is made of 1) a subthreshold
region, which is divided into an Ohmic part at the lowest
currents and an exponential part; 2) a negative differential-
resistance region, where an increase of the prescribed current
implies a decrease of the voltage drop across the device; and,
finally, 3) by a fast increase of the voltage at the highest
currents. In fact, we observe that in the upper part of the
curve the model identifies a limiting current. This is rather
unphysical, and indicates that a different transport process not
considered in the present analysis, like, e.g., band conduction,
must take place to sustain the current.

As far as the snap-back effect is concerned, both the thresh-
old voltage (1.1 V) and current density (7·105 A/cm2) of the
simulated J(V ) characteristics correspond to the experimental
data for a prototype phase-change memory cell.

Addressing the physical details of the problem, the snap-
back effect can be interpreted in terms of potential profile,
transition rates and trap-occupancy (see Figs. 3-5).
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Fig. 3. Potential profile inside the device. Each line refers to a different
applied current density J in the range 9.26·102- 3.79·106A/cm2. Electrons
enter the device from the right contact.
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Fig. 4. Trap occupation fraction as a function of the axial coordinate of the
device. The occupation fraction has been averaged over 192 simulations. Line
colours correspond to the same situation as in Fig.3.

In the whole subthreshold region, up to J ≈ 105 A/cm2, the
occupation fraction is around 0.5 keeping itself almost constant
along the device, meaning that the space charge inside the
device locally compensates. The voltage drop across the device
is mainly due to charge accumulation at the two contacts: the
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Fig. 5. Charge distribution inside the device and on the two contacts in the
current density range 102 − 107 A/nm2. Electrons enter the device from the
right contact.

internal electric field progressively increases with the current
and lowers the energy barriers between traps, enhancing the
occurrence of long-range transitions.

When the hopping process is not fast enough in trasferring
carriers from the a-GST to the external circuit, charges are
forced to accumulate close to the collecting contact. A coun-
terfield originates inside the a-GST region and adds to the
contribution coming from the two contacts. At this stage the
internal potential profile is no more linear, and a more complex
shape due to the superposition of different contributions is
found. As a net effect, the potential drop decreases as the
current increases.

In order to understand this effect, let us first consider
that higher currents can be sustained only if more frequent
transitions happen. This is achieved by emptying the region
close to the injection contact, whose occupation number gets
close to 0, and filling the region close to the collecting one
(occupation number getting close to 1). The counterfield is
enhanced to its maximum value, this hampering the carriers’
flow between the contacts. As a result, the charge accumulates
at the contacts and the potential drop between them quickly
increases again. As anticipated, the model fails around the
limiting current density J ≈ 5 · 106 A/cm2, when some other
transport mechanisms must gain importance and set in.

B. Effects of the parameters

Eqs. (1) and (2) are defined through a number of parameters
that have a physical origin. The proposed model helps in
understanding how they influence the J(V ) curve and, in turn,
the features of a device.

The trap concentration Nt is of fundamental importance
for the rise of the snap-back effect, as reported in Fig. 6.
If the trap concentration is too low (Nt < 5 · 1018 cm−3),
the J(V ) curve monotonically increase; on the other side, the
snap-back is present and enhanced by higher concentrations.
Furthermore, we have found that the threshold voltage is
reduced and the threshold current density J is increased by an
increased trap concentration. It should also be pointed out that
the slope of the subthreshold exponential region is not affected
significantly by the variation of Nt, meaning that this region
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Fig. 6. J(V ) characteristics for different values of the traps density Nt in the
amorphous region reported in the legend box. The other parameters used in
the simulations are β = 1/20, ν0 = 1·1012 s−1, and α0 = 4.54·106 cm−1.

of the J(V ) curve is more influenced by the other parameters,
such as the energy barrier. These results confirm what already
stated in the literature [4].

The shape of the J(V ) curve is also determined by the effect
of α, defined through α0 and β in eq. (2). The incorporation
of a contribution due to the local field in the transition rates
appears to be a key point, as reported in Fig. 7: when Tij

is kept independent of the local field, i.e. β = 0, the snap-
back effect is absent. A small but non vanishing value of β
makes the snap-back possible. The threshold voltage is highly
sensitive to this parameter.
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Fig. 7. J(V ) characteristic for three different values of β reported in the
legend box. The other parameters used for the calculation are: ν0 = 1 ·
1012 s−1, Nt = 1.48 · 1019 cm−3, and α0 = 4.54 · 106 cm−1.

Moreover, the characteristic tunnelling distance α−1
0 , which

is an indirect measurement of the barrier height between two
sites, also contributes to affect significantly the position of the
threshold voltage and the slope of the exponential regime in
the subthreshold region (see Fig. 8). As stated above, the snap-
back condition is linked to the progressive lowering of α by the
local field. It is thus evident that, for a fixed β, a larger value
of α0 requires a stronger potential to give the same effect. It
should also be pointed out that both the threshold voltage and
the subthreshold exponential slope are much more sensitive
to β than to α0; nevertheless the overall shape of the J(V )
curves is determined by the combined effects of both of them.
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Fig. 8. Effect of the characteristic inverse tunnelling distance α0 in the
amorphous region on current-voltage curves. The other parameters used for
calculation are: β = 1/20, ν0 = 1 · 1012 s−1, Nt = 1.48 · 1019 cm−3.

Finally, the attempt-to-escape frequency ν0 is representative
of the phonon spectrum of the GST layer; from literature
data [6] it is of the order of 1012 s−1 or less. It is found
that a change in ν0 produces a rigid shift in the J(V ) curve
proportional to the change itself along the current axis.

V. CONCLUSION

Charge transport has been investigated in a device made of
a nanometric layer of a-GST sandwiched between two metal
contacts. The theoretical framework provided by the analysis
of a 3D transport in terms of variable-range hopping yields,
without any further assumptions, a complete description of the
mechanisms governing the threshold switching. The outcome
of the investigation shows that the snap-back effect can be as-
cribed to the formation of domains of charges that modify the
potential profile within the device and, in turn, the transitions
rates.
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