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Abstract—The influence of temperature, carrier concentration
and electric field on the hopping transport in disordered organic
semiconductors is studied theoretically, and a simple and accurate
analytical model is worked out. The model is based on the
concept of percolation in a variable range hopping system and the
calculations are worked out exploiting the effective temperature
approach. At room temperature the dependence on carrier
density plays a major role, whereas at low temperatures or high
fields the electric field dependence becomes relevant. Neglecting
only one of those effects, depending on the operating conditions,
leads to an evident underestimation of the hopping mobility.

Index Terms—VRH transport, percolation theory, DOS

I. INTRODUCTION

The interest in organic electronic stems from the the ability
to deposit organic films on a variety of low-cost substrate
such as glass, plastic or metal foils, and the relative easy of
processing of the organic compounds. The use of amorphous
organic semiconductors in light emitting devices (OLEDs)
and field-effect transistors (OFETs) has triggered an inten-
sive research on their optoelectronic and electrical transport
proprieties [1]. Understand the charge transport is of crucial
importance to design and synthesize better materials and
to improve device performance. One of the most important
parameters that determine the devices performances is the
carrier mobility μ. In particular, the dependence of μ on
temperature T and electric field F and carrier density has
been extensively addressed in the literature [2], [3], [4], and
several models that separately account for each of them were
proposed [5], [6]. On the other hand, a clear physical picture
of the mobility that globally accounts for the relative effects
of temperature, carrier density, and electric field, is still absent
in the literature. Experimentally, it is difficult to separate the
relative importance of electric field and carrier density on
the mobility μ since, at high electric fields, the carriers are
more efficiently injected from the contacts as well. In Ref.
[7] the carriers dependence of μ was explained by means
of an empirical expression based on the algebraic expression
of Vissenberg and Matters μ ∝ pT0/T−1 [8] slightly modi-
fied by adding a density-independent contribution empirically
introduced from the current-voltage characteristics of hole-
only diodes. That empirical expression does not correctly
account for the experimental current-voltage characteristics at
low temperatures and at high voltages; it was attributed to an
unknown dependence of μ on the electric field.

Aim of this work is to derive a mobility model that ac-
counts, in a single analytical expression, for the most relevant
physical quantities: temperature T , carrier concentration δNt,
and electric field F . The model is based on the concept of
percolation in a Variable Range Hopping system (VRH) with
an exponential distribution of localized-energy states (DOS)
[8] and the mathematical calculations are worked out by ex-
ploiting the well accomplished effective temperature approach
[9], [10], [11], [12]. It accurately reproduce experiments and
numerical simulations and provides, by means of a single
mathematical expression, a clear picture of several physical
effects as, for instance, the Poole-Frenkel like dependence of
the mobility on the electric field or the Arrhenius dependence
on temperature. We expect that this mobility theory enables
predictive models for disordered organic devices based on pa-
rameters that may be determined ab initio from measurements.
Furthermore, thanks to its simple analytical formulation, the
relative importance of temperature, carrier density, and electric
field could singularly investigated and disentangled on the
experimental results.

II. THEORY: MODEL DERIVATION

Charge transport in disordered organic semiconductors is
governed by hopping through localized states. The conduc-
tance between two sites is proportional to the occupation
probability of the site that release the carrier, called donor,
the occupation probability of the site that receive the carrier,
called acceptor, and the hopping rate between the two sites:

Gij = G0f(Ei, EF ) [1 − f(Ej , EF )] νij (1)

where G0 is a constant prefactor and EF is the Fermi energy
level. In presence of an electric field F the Miller-Abrahams
hopping rate [13], from a donor at energy Ei to an acceptor
at energy Ej at a distance rij , can be re-written as:

νij = ν0 exp [−2αrij ] exp
[−||Ej − Ei − F · rij ||

2KBT

]
(2)

where ν0 the attempt-to-escape frequency, α−1 the localization
radius of a charge carrier, rij the distance between the two
sites, KB the Boltzmann constant, T is the temperature and
||x|| = x + |x|.

Furthermore, the occupation probability should be worked
out in order to include the local variation of EF arising from
the external electric field, and the Fermi-Dirac distribution
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should be generalized to non-equilibrium. The non-equilibrium
occupation probability is accurately accounted for by replacing
the lattice temperature T in the Fermi-Dirac statistic with an
effective temperature Teff that, in turn, is a function of the
electric field [12]:

f(E,EF ) =
1

1 + exp
[

E−EF

KBTeff

] (3)

and

Teff =

[
T β +

(
γ

eF

αKB

)β
]1/β

(4)

where β and γ are fitting parameters (β = 2, γ = 0.67 [10];
β = 1.54, γ = 0.64 [12]) and e is the elementary charge.

By assuming E > EF +2KBTeff and Ej > EF +2KBT ,
that is KBTeff , small compared to all the energy of the sys-
tem, the non-equilibrium occupation probability can approxi-
mated by the Boltzmann distribution and the non-equilibrium
conductance between the sites can be re-written in a very
simple form:

Gij = G0 exp[−sij ] (5)

where sij is:

sij = 2αrij +

⎧⎨
⎩

Teff
T E

′
j−EF +

T−Teff
T Ei

KBTeff
, E

′
j > Ei

Ei−EF

KBTeff
, E

′
j ≤ Ei

(6)

and E
′
j = Ej − eηFrij , η = η (θ, ϕ) = sin(θ)sin(ϕ). It is

worth noting, that the largest percentage error introduced by
the above approximation, with respect to the exact solution,
is about 12% in a small energy region around to the Fermi
level (where |E − EF | < KBTeff ). In other words, the
probability to find an empty site is assumed equal to one,
and the conductance between two site dependes only on the
hopping rate and on the probability to find an occupied donor
site.

According to the percolation theory [8], [14], the system is
treated as a random resistor network that connects the molec-
ular sites. To determine the conductivity of the disordered
system, we take a reference conductance G and remove all the
conductive pathways between sites with Gij < G. At large G,
the remaining conductances form isolated clusters that increase
in size with decreasing G. The critical percolation conductance
Gc = G0 exp[−sc] is defined as the value of G such that the
first continuous infinite cluster is formed. According to the
percolation theory [14], the conductivity of the system reads:

σ = σ0 exp[−sc] (7)

where σ0 is an constant prefactor and sc is the exponent of the
critical percolation conductance Gc at which this percolation
threshold is reached. The onset of percolation is determined by
calculating the average number of bonds (Gij > G) per site
in the largest cluster, this number of bonds B increases with
decreasing G as far as, at the onset of percolation, the critical
number of bonds Bc is reached. The onset of percolation is

determined by calculating the critical average number of bonds
per site:

B (G = Gc) = Bc =
Nb(sc, EF )
Ns(sc, EF )

(8)

where Bc = 2.8 for a 3-D amorphous system [15], Nb and
Ns are the density of bonds and the density of sites in a
percolation system, respectively. The total density of bonds
can be calculated by integrating in energy, over the distance
rij , the product of all donor sites (at energy Ei) and all
the available acceptor states (at energy Ej) that satisfy the
percolation criterion:

Nb =
∫

R5
g(Ei)g(Ej)θ (sc − sij) dEjdEidxijdyijdzij

=
∫ 2π

0

∫ π

0

sin (θ)
∫ sc

2α

0

r2
ij

∫ EF +Ui
F

EF

g (Ei) ×

×
∫ T

Teff
(EF +Uj

F )

EF

g (Ej) dEjdEidrijdθdϕ (9)

where rij =
√

x2
ij + y2

ij + z2
ij , g(E) is the density of localized

states and Uk
F , k = {i, j} is the maximum hopping energy that,

from Eq. 6, turns out to be:

U i
F = KBTeff (sc − 2αrij) (10)

U j
F = U i

F −
(

T − Teff

T

)
Ei + e

Teff

T
ηFrij (11)

The density of sites Ns that satisfy the percolation criterion
is:

Ns =
∫ EF +U

EF

g(E) dE (12)

where U = U i
F (rij = 0, F = 0) = KBTsc. Following Vis-

senberg and Matters [8], at low carrier densities, the transport
properties are determined by the tail of the density of the
localized states g(E) = Nt

kBT0
exp

(
E

kBT0

)
, where Nt is the

number of states per unit volume, T0 is a parameter related to
the system disorder, and g(E) = 0 for positive values of E.
Since an occupied donor site, after a carrier hopping, becomes
an empty acceptor site, it is conventionally assumed that donor
and acceptor sites have the same DOS. The exact conductivity
σNE of an amorphous organic material can be calculated
by replacing in Eq. 7 the critical percolation conductance
exponent sc numerically calculated from Eq. 8.

The influence of the electric field on the hopping between
sites is accounted for by means of an energy shift due to
the potential energy (Eq. 2) arising from the electric field,
along with a redefinition of the carriers occupation probability
(Eq. 3) that should be generalized to non equilibrium Eq.
4. Since the energy shift depends on the hopping direction
and the maximum hopping distance, we expect it to weakly
influence the overall system conductivity. In order to evaluate
its relative importance on the overall conductivity, Eq. 8 has
been solved neglecting the electric field contribution in Eq.
11 and the conductivity σNA has been obtained. In Fig. 1 the
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Fig. 1. Relative conductivity error (erσ % = 100 |σNE − σNA| /σNE ) as
a function of electric field at different temperatures. Inset: maximum relative
conductivity error as a function of temperature T.

relative conductivity error (erσ
= |σNE − σNA| /σNE) as a

function of electric field at different temperatures is reported.
The largest error is below 12% and decrease with temperature
(from about 12% at T=160K to 5% at T=400K). Therefore, in
order to work out a full analytical expression, its contribution
can be neglected and Eq. 11 can be simplified as:

U j
F = U i

F −
(

T − Teff

T

)
Ei (13)

and Eq. 9 does not depend on θ and ϕ. Furthermore, thanks to
the proprieties of the exponential function g(E), when the hop-
ping energy U is larger then few thermal units (U ≥ 3KBT0),
the lower extreme of the integrals (Eqs. 9, 12) is vanishing
and the polygonal integration domain can be simplified by a
semi-infinite region and Eqs. 9, 12 can be simplified as:

Nb = 4π
∫ sc

2α

0

r2
ij

∫ EF +Ui
F

−∞
g (Ei) ×

∫ T
Teff

(EF +Uj
F )

−∞
g (Ej) dEjdEidrij (14)

where U j
F is given by Eq. 13 and

Ns =
∫ EF +U

−∞
g(E) dE (15)

Substituting Eqs. 14, 15 into Eq. 8 the percolation criterion is
obtained:

Bc ≈ πNtT
3
0

(2α)3 T 2
eff (2Teff − T )

exp
[
EF + KBTeffsc

KBT0

]
(16)

where it is assumed that the maximum energy hop is large
(scKBT >> KBT0) [8], and that the hopping takes place be-
tween localized states. Combining Eq. 7 and 16, the expression

of the conductivity as a function of electric field, Fermi level
and temperature reads:

σ = σ0

[
πNtT

3
0

(2α)3 BcT 2
eff (2Teff − T )

] Teff
T0

exp

[
EF

KBTeff

]
(17)

The Fermi level can expressed as a function of the carrier
concentration since:

δNt =
∫ +∞

−∞
g(E)f(E,EF )dE

≈ Nt

(
πT/T0

sin(πT/T0)

)
exp

[
EF

KBT0

]
(18)

where δNt is the fraction of localized states occupied by
carriers, δ ∈ [0, 1] (δNt is the electron/hole concentration
depending on the device type). In Eq. 18 it is assumed a
high level of disorder (T0 > T ), hence only the tail of the
DOS is relevant since the carriers are located far from E = 0.
Combining Eqs. 17, 18 the analitic expression of the mobility
of disordered organic material as a function T , δNt, and F is:

μ =
σ0

e

⎡
⎣ T 4

0 sin
(
π T

T0

)

Bc (2α)3 T 2
eff (2Teff − T ) T

⎤
⎦

T0
Teff

(δNt)
T0

Teff
−1

(19)

It is worth noting that if F → 0, Teff → T the above equation
is exactly the same of [8].

III. MODEL VALIDATION

In order to investigate the accuracy of our model when F >
0, it is compared with the numerical solution of the master
equation of [12] that has been proved to accurately reproduce
the current-voltage characteristics of both light emitting diodes
and field effect transistors. In Fig. 3, the mobility as a function
of the temperature at different electric fields is compared with
[16] as well.

The parameters of our model (Nt = 1021cm−3, T0 =
470K, σ0 = 3ν0 10−19S/cm, α−1 = 1.8Å, γ = 0.7,
β = 1.72) are in a very good agreement with the literature:
Nt and α are the same of [16], T0 is straightforwardly derived
following [17], γ and β are fitting parameters [12]. The two
models are in perfect agreement, and when F > 3×105V/cm
the well known Pool-Frenkel behavior μ ∝ exp[γ

√
F ] is

correctly reproduced. Hence, as reported in [16] there is no
need to assume spatial energy correlation, as suggested by
several authors, and the sites may be assumed uncorrelated.
As reported in [7], [17] the mobility is strictly correlated to the
carrier density that, in turn, depends on the shape of the density
of states; it follows that our model correctly approximate the
numerical solution of [16], that is based on a gaussian DOS,
only locally. Therefore, the characteristic parameters of the
exponential distribution, Nt, T0 should be slightly modified
when the mobility is calculated at large carrier concentrations
(FET devices) or at low carriers concentrations (LED devices)
[17]. In Fig. 3, the mobility as a function of the temperature
is compared with [16] as well. The two models are in perfect
agreement and the mobility, as reported in [18] is clearly
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Fig. 2. Numerical (symbols) and analytical (lines) mobility as a function
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Fig. 3. Numerical (symbols) and analytical (lines) mobility as a function
of the temperature at different electric fields for NRS-PPV. � F=0 V/cm, ◦
F=0.5 MV/cm, � F=0.7 MV/cm, � F=0.88 MV/cm, � F=1.1 MV/cm.

consistent with an Arrhenius temperature dependent transport.

IV. CONCLUSION

To conclude, in this paper we have presented an unified
description of the carrier mobility in disordered organic ma-
terials. The model is based on the concept of percolation in
a variable range hopping system and the effect of the electric
field is accounted for by exploiting the effective temperature
approach. The calculations are carried out by critically investi-
gating the approximation introduced by the above authors and
are worked out following a new straightforward mathematical
approach. It accurately reproduce experiments and numerical
simulations and provides, by means of a single mathematical
expression, a clear picture of several physical effects as the

Poole-Frenkel like dependence of the mobility on the electric
field or the Arrhenius behavior on temperature.
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