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Abstract— Efficient atomistic simulators are required for full 
band treatments in strongly quantum confined systems, and for 
simulation of transport in emerging materials and devices such as 
graphene. Here we present an efficient transmission matrix based 
approach to ballistic quantum transport calculation for full 
three-dimensional, nearest-neighbor tight-binding based 
atomistic simulations. The method is then used to demonstrate 
how band-to-band tunneling increases the leakage current in 
OFF state in field-effect transistors with low band gap 
semiconductors such as InSb as channel material. 
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I. MOTIVATION 
Phase-coherent ballistic transport effects manifest in many 

semiconductors as the channel lengths scale to few tens of nm 
[1], necessitating full quantum transport simulation. Field-
effect transistors (FETs) using nanowires as the 
semiconducting channel have high confinement in the channel 
region in not only the vertical, but also the lateral direction. 
Furthermore, the source (S) and drain (D) regions may be 
comparatively large compared to channel cross-section and 
defects such as surface roughness or charge impurities may be 
present within the channel.  As a result, nominally discrete 
propagating modes can mix and a quasi one-dimensional (1D) 
model of quantum transport with discrete transverse modes 
within the channel cross-section can be insufficient.  Fully 
three-dimensional (3D) quantum transport simulation becomes 
necessary. 

In addition, full band structure treatments are becoming 
increasingly important.  Full-band treatments are necessary to 
model hole and strong electron quantum confinement.  
Furthermore, several III-V materials such as InAs, InSb, 
InGaAs and group IV material like Ge are possible candidates 
for replacing Si channel [2].  InSb with its very high electron 
mobility is particularly suitable for high-speed logic [3-4].  The 
attendant low band-gap, however, makes it difficult to shut off 
the InSb based transistors, necessitating more complex 
architectures like quantum well FETs [5-6].  Simple effective-
mass based quantum transport simulation also fail to address 
the band-to-band tunneling in InSb nanowire transistors under 
high OFF-state gate bias, as well as the proper dependence of 
the bandgap on the degree of confinement. 

For such reasons, efficient full-band atomistic simulators 
are increasingly in demand.  In this work, we adapt an efficient 
transmission matrix based approach to quantum transport 
calculation previously implemented within an effective mass 

approximation [7] for full 3D, atomistic, nearest-neighbor 
tight-binding (TB) based simulations. These transport 
calculations represent an alternative numerical implementation 
for such systems of the widely accepted non-equilibrium 
Green’s function [NEGF] approach [8]. We will detail our 
methodology in Section II.  In Section III, we report on band-
to-band tunneling (BTBT) current in strongly-confined 
nanowire FETs with InSb channels.  In other works, we have 
adapted this same approach to model transport in single and 
multi-layer graphene-based devices [9]. 

II. METHOD 

A. Crystal structure and basis set 
In this approach, each atom in the device is incorporated 

explicitly in the Hamiltonian. The atoms are represented by 
orthogonal (Löwdin) orbitals and the on-site energies and 
hopping potentials are obtained from empirical TB theory [10].  
The atomistic Hamiltonian changes for different materials, 
orbital bases and crystal orientations; however, the general 
method remains the same.  For an optimum balance of 
accuracy and computational cost in the simulations of this 
work, we have restricted ourselves to the sp3s* basis with 
nearest neighbor interactions, as the energy bands are well 
modeled close to the Γ point [10]. Also, we have used the 
original empirical TB parameters given in [10] instead of the 
parameters optimized to obtain best fit of just the low lying 
conduction and valence bands [11].  The focus of this work is 
to demonstrate the capability of our atomistic simulator in a 
qualitative rather than quantitative fashion. And we concentrate 
here on [100] transport in III-V semiconductors that exhibit a 
zinc-blende crystal structure. 

For [100] transport in a square III-V nanowire, we can 
visualize the nanowire as successive face-centered cubic (fcc) 
planes that are displaced from the previous plane along the 
body diagonal by (a/4, ±a/4, ±a/4) where a is the material 
lattice constant. The atomistic view of eight successive fcc 
planes along the transport direction is shown in Fig. 1. The 
atomic structure repeats itself every fourth layer along the 
transport direction, and therefore, these four layers constitute 
the primitive cell. 

B. Band structure calculation for the leads 
The time-independent Schrödinger equation for a tight-

binding Hamiltonian can be written in a layer-to-layer coupled 
form as: 
 , 1 1 , , 1 1l l l l l l l l l lE− − + ++ + =H ψ H ψ H ψ ψ . (1) 
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Figure 1. Eight fcc lattice planes, stacked along (100) direction, to form a 
square nanowire 2 atoms wide, showing the individual atomic locations in 
the plane.  For zinc blende structures such as InSb, the layers are 
alternately anions and cations. For a diamond crystal structure such as Si 
or Ge, all the atoms are identical. 

Here lψ is the wavefunction (column matrix) where each row 
corresponds to a particular orbital of a particular atom in the l-
th layer, , 1l l±H is the coupling (square matrix) from layer l to 
layer l±1, E is the eigenenergy and the ,l lH are populated with 
on-site energies including applied potential energy 
contributions, and transfer matrix elements between atoms in 
same layer, and , 1l l±H  are populated with transfer matrix 
elements between atoms in neighboring layers. The entire 
device from source (S) to drain (D) can be broken up into N 
layers perpendicular to the transport direction. Fig. 2 shows 
these layers schematically.  Within the leads the applied 
potential energy contributions are determined by the source 
and drain biases and the injected charge densities; within the 
simulation region, by self-consistent electrostatics.  

The S/D contacts/leads can be assumed to be semi-infinite 
wires that are in thermal equilibrium with the applied bias, and 
are therefore equipotential.  Denoting the four layers of the fcc 
lattice repeat unit from left to right as –2 to 1 (see Fig. 2) and 
assuming constant potential, which is adjusted consistent with 
source and drain biases and charge densities, (1) can be 
written explicitly for the left lead as: 
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where for Bloch states and also evanescent states within the 
leads we may write 3 1 2 2, λ λ− −= =ψ ψ ψ ψ , with Bloch 
factor ( )exp xik aλ = ∓  for the set of four layers each space by 
a/4 from the previous.   

After some algebraic manipulation we can reduce the 
eigensystem to a basis set consisting of 2 3 and ψ ψ  as follows: 
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Equation (3) is a generalized eigenvalue system whose 
dimension depends on the size of the system modeled and the 
tight-binding basis set used. We solve (3) using standard 
commercially available math libraries such as IMSL [12].  

The eigenfunctions of (3) can be identified as propagating 
modes if |λ|=1.  A plot of the corresponding real values of kx 
vs. the eigenenergy E provides the real band structure for the 
quantum wire leads.  A similar procedure also allows 
calculation of the imaginary band structure for the evanescent 
states |λ|≠1 which is relevant to understanding tunneling. 

The probability current flow for any wavefunction lψ  j is: 

  †
, 1 1

2 Im l l llj + +
⎡ ⎤= ⎣ ⎦ψ H ψ

=
.  (4) 

The probability current carried per mode per unit energy by  

these occupied Bloch states should always be precisely equal 
to 2/h counting both spin states, where h is the Planck’s 
constant. This relation is used to normalize the amplitude of 
the incident wavefunctions.  The solutions to (3) with |λ|=1 
and j>0 (although not necessarily kx>0) for the left lead 
represent the right-going incident propagating waves. 

C. Transport  calculation 
The eigenfunctions of the leads form a complete basis that 

is used for injecting probability density into and extracting 
probability density from the device region.  For the two central 
layers in the left lead, and for each energy, the eigenfunctions 
can be arranged into a basis matrix BL, as [7]:  

  1 1
L

0 0

( ) ( )
( ) ( )

− −→ ←⎡ ⎤= ⎢ ⎥→ ←⎣ ⎦
ψ ψB ψ ψ ,  (5) 

Here 0ψ is now a square matrix where each row represents a 
particular orbital of a particular atom as before, and each 
column represents a particular transverse mode in the left lead 
(source side). And → (←) indicate the basis functions that 
either propagate or decay towards right (left). Similarly the 
basis function BR can be constructed for the two central layers, 
N+1 and N+2, in the right lead (drain side). 

Within the simulation region, B0 can then be propagated to 
the right one layer at a time via transfer matrices Tl  

( )1 1
, 1 , -1 , 1 ,

l
l l l l l l l lE− −
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Here the Hamiltonians H are adjusted for changing coupling 
potentials, and onsite potentials including the self-consistent 
changes to the electrostatic potential. 

In principle at least, by cascading the transfer matrices and 
imposing appropriate boundary conditions, the complex 
transmission and reflection matrices t and r coupling each 
incoming mode to each outgoing mode, — one column and 
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Figure 2. Schematic of the transport calculation showing the break-up of the simulation region into a device region that includes source, channel and drain 
regions (green shade), and semi-infinite source and drain contacts at the two ends. The layer to layer interaction matrix is shown for only one interaction in the 
schematic (H12). In practice, there are a large number of slices in the device region, depending on the length of the device simulated. 

…

 
 

HN+3 

InSb (Undoped) 

z 

y 

Oxide thickness  

Nanowire Width 

InSb (Contact) 

InSb (Doped)  
Oxide/ High κ 

Dielectric 

y 

Device Width 

Contact 

Channel Length

x 

z 

D
ev

ic
e 

L
en

gt
h 

Figure 3. Schematic of the device simulated: (left) the cross-section of 
the channel region, perpendicular to the transport direction and (right) 
the view from the top showing the source and drain contact at the 
ends, and the gate oxide in the middle, surrounding the channel. 

one row for each mode in the respective leads ⎯ for the entire  
device can then be calculated:  

 1
1 ....R N N 2 1 L

−
+

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
t 1B T T T T B0 r . (8) 

Propagation from the drain can be handled similarly. 

 In practice however (8) is extremely unstable.  We have 
followed the stabilization method developed by Usuki et al. 
[7] to solve for the t and r matrices, but the wave-functions are 
obtained using a simpler, equivalent method given in [13]. 

Carrier density n is obtained from the probability density 
associated with the wave functions injected from source (left), 
n(→), as well as drain (right), n(←).  n(→) is calculated for 
each atom α in the device by summing over the probability 
density in each orbital β  in each incident propagating mode χ:  

 ( ) 2

, , ( ) ( )sn dE E f Eα α β χ
β χ

ψ→ = ∑∑∫ . (9) 

Then n is fed into Poisson’s equation to solve for the 
electrostatic potential which, in turn, is self-consistently fed 
back into (1).  

Once a self-consistent solution is obtained, the total 
charge current due to injection from the source side (I) can be 
calculated from the normalized wavefunctions , ( )l Eχψ  for 
arbitrary temperature and bias from 

( ) †
, , 1 1,

2 Im ( ) ( ) ( )l l l l SI q dE E E f Eχ χ
χ

+ +⎡ ⎤→ = ⎣ ⎦∑∫ ψ H ψ
=

 (10) 

at any point within the simulation region, where q is the 
electronic charge, and χ labels the mode and l the layer. Here 
fS is the Fermi function at the source contact, and the 
integration is performed over the range of applied bias plus or 
minus a few kBT/q to account for non-zero temperature effects, 
where kB is Boltzmann’s constant and T is the temperature.  

The method of calculating transmission probabilities that 
we follow [7] is similar to Ando’s formalism [14], and 
Khomyakov et al. [15] have discussed the equivalence of this 
approach with that of the Green’s function techniques [8, 16]. 
Gilbert and Ferry adapted this method to calculate 3D quantum 
transport in Si-on-insulator metal-oxide-semiconductor FET 
devices within an effective mass approach [17]. We note that 
the numerical approach used here is, beyond being an atomistic 
tight-binding approach, quite different than that used in [18]. 

III. RESULTS 

A. Band Structure of [100] square InSb nanowire 
The schematic of a gate-all-around InSb nanowire FET is 

shown in Fig. 3. For computational ease, we have restricted 
the nanowire widths to 26.92, 32.40 and 38.88 Å, 
corresponding to 4, 5 and 6 atoms along the width, 
respectively. The device has an alumina (Al2O3) high-κ gate 
dielectric, with an effective oxide thickness of 6.48 Å, where 
the high-κ dielectric material is modeled pseudo-atomistically 
by taking appropriate empirical obtained TB parameters to 
produce a bandgap corresponding to Al2O3, with band offset to 
InSb as reported in [19] with a type I interface.  

The band-structure of an ultrascaled square (100) InSb 
nanowire of width 26.92 Å is shown in Fig. 4. The conduction 
and valence band edges shift to -0.28 eV and 0.78 eV, 
respectively, from the bulk values being 0 and 0.23 eV for the 
set of TB parameters used [5] illustrating the considerable 
increase of band gap induced by very strong confinement. 

B. ID-VG characteristics of a [100] square InSb nanowire 
In Fig. 5, the self-consistent ID-VG characteristics are 

shown for ballistic transport in square (100) InSb nanowires of 
widths 26.92 and 32.40 Å. While these extremely narrow 
cross-sections (corresponding to 4 and 5 atoms wide) may not 
be realized in practice, the simulations serve to illustrate the 
band-to-band tunneling (BTBT) that ails any low band gap 
semiconductor. 

For large negative VG, the valence band is pulled up under 
the gate, allowing electrons injected from the conduction band 
of source to tunnel into the valence band in the channel, giving 
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Figure 5. ID-VG for two square (100) InSb nanowire MOSFETs in a gate-all-
around architecture, having identical channel length of Lch = 5.2 nm. Inset: 
ID-VG in linear scale. Lower BTBT in narrow nanowires reduces IOFF, but 
peak ID is also slightly reduced for narrow nanowires. 

 
Figure 6. ID-VG for two square (100) InSb nanowire MOSFETs, having 
same Wch = 3.24 nm, and different Lch. Longer Lch has lower minimum 
IOFF due to reduced BTBT. In absence of scattering, peak ID is unchanged 
with Lch, as the inset (linear plot of ID-VG) confirms. 

 
Figure 4. Energy dispersion relationship of the multiple quantum 
confined subbands of a square (100) InSb nanowire of width 26.92 Å. 

rise to OFF state BTBT leakage current. This leakage current 
decreases with decreasing nanowire width, since wires with 
smaller cross-section have higher confinement-induced band 
gap, which reduces the overlap of bands, thereby reducing the 
current. The peak drain current, however also decreases 
slightly on reducing the cross-section (see the linear ID-VG in 
the inset of Fig. 5) likely due to an overall reduction in 
injected carrier velocities resulting from strong confinement 
combined with non-parabolicity. 

In the OFF state, band-to-band leakage, and thus ID is also 
be reduced by increasing the channel length (Lch) due to an 
increase in the barrier thickness and an associated decrease in 
tunneling probability. This reduction can be seen in Fig. 6 for 
two devices with different Lch (5.4 and 10.2 nm) but same 
nanowire width (Wch = 3.24 nm) where the minimum 
subthreshold current decreases by ~ 3 orders of magnitude.  In 
the ballistic limit, ION remains unaffected by the increase of Lch 
(inset of Fig. 6) although gate capacitance and required drive 
current would increase.  And with some diffusive transport, 
however, ION would also be expected to decrease with the 
increase of Lch. As a consequence, Lch would have to be 
optimized to achieve the best combination of ION and low IOFF. 
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