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Abstract—Density-gradient theory is discussed as a tool for mod-

eling Sb-based p-channel FETs.  The theory’s methods and ap-

proximations are reviewed with emphasis given to the phenome-

nological treatment of the quantum confinement.  The theory is

then illustrated by using it to analyze FETs having InSb, GaSb

and InGaSb channels, and to project their scaling characteristics.
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 I.  INTRODUCTION

Device modeling has long had an important role in elec-
tronics as a means for projecting the performance of new mate-
rials, and as a tool for engineering optimization.  With the ag-
gressive scaling of devices that has occurred in recent years,
the workhorse method of diffusion-drift (DD) theory has be-
come increasingly questionable as quantum and high-field
transport effects have become ever more dominant.  This fact
has led many researchers to emphasize microscopic methods
with either a classical (e.g., Boltzmann/Monte Carlo) or quan-
tum mechanical (e.g., NEGF) foundation.  These methods are
attractive because they provide a physically well-founded basis
for treating the “new” physics of the scaled devices.  However,
they also suffer from a number of drawbacks with the main one
being they are generally too computationally intensive for rou-
tine use in engineering.  Other disadvantages are that they tend
to provide an uneven treatment (e.g., providing an excellent
representation of the quantum mechanics but then treating
scattering with a simple relaxation time), they often lapse into
phenomenology with their physics content compromised by
insufficient knowledge of real materials and devices (e.g.,
about the scattering rates especially deep in the band, the de-
gree of strain relaxation, or the precise impurity profiles), and
they do not interface easily with other methods (e.g., in devices
in which quantum effects are important only in a small region
of the device).  In the face of these realities, it seems imprudent
to focus solely on the microscopic methods, and premature to
give up on the “traditional” device modeling approaches.  This
is the general philosophy of the present paper where we use
methods that have the same macroscopic/continuum basis of
DD theory but that extend that theory in various ways.  In par-
ticular, we focus on ultra-scaled heterojunction FETs and on
their description using a version of density-gradient (DG) the-
ory that is essentially a quantum-corrected DD theory [1].

As an application area, this paper engages a topic of recent
interest, namely p-channel FETs formed of compound III-V
semiconductor materials.  Work on such FETs has been moti-
vated by the possibility of creating a high-performance III-V
analog of Si CMOS [2].  Ongoing efforts by several groups
have seen good progress in raising the III-V hole mobility by
focusing on the antimonides, i.e., InSb [3], GaSb [4] and their
alloys [5], and by utilizing confinement and strain much as is
done with p-channel Si technology [6].  The highest reported
room-temperature hole mobility to date in a III-V material is
about 1500cm

2
/V-sec for InGaSb [5].  For the purposes of our

macroscopic modeling work, the problem of hole transport is
especially attractive for two reasons.  First, efforts to model
such hole transport using microscopic methods are far less well
developed than for the corresponding n-channel FETs.  And
second, because the hole mobilities are relatively low, high-
field transport phenomena will tend not to dominate except
when the gate lengths are extremely short, and therefore the
simplified scattering-dominated version of DG theory em-
ployed in this paper is more likely to suffice.

 II. DENSITY-GRADIENT APPROACH

A. Governing Equations

Generically, DG theory is a classical field theory.  As such,
the hole gas is assumed characterized by a set of densities of
which the most important are the charge density qp , the cur-

rent density qpvp, and the stress.  These densities are con-

strained by the classical laws of charge conservation, momen-
tum balance, and electrostatics, which for scattering-dominated
situations may be written as [1]:

(1a)       
p

t
+ pvp( ) = 0        

pvp

μp

+ p + p p
DG = 0

(1b)    d( ) = q NA p( )

where the stress has been expressed in terms of a chemical po-

tential p
DG

 and all other quantities take their usual meanings.

That momentum conservation is reduced to the simple force
balance in (1a)2 is a consequence of the assumption of strong
scattering and is a direct statement that ballistic phenomena are
not encompassed by these equations.
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Fig. 1a-c.  Density profiles across the quantum wells studied in this paper as simulated by quantum mechanics and fit by DG theory.  The DG effective
masses determined by these fits appear in Table 1.

 The defining assertion of DG theory is that the stress in the
hole gas depends not only on the gas density as in DD theory,
but also on the density-gradient.  This latter dependence makes
the hole gas response “non-local” and can thereby provide a
first-order representation of the one-particle quantum non-
locality associated with the deBroglie wavelength.  When for-
mulated in terms of the chemical potential, the lowest-order
relationship is

(2)    p
DG = p

DD p( )
2

r
bp r( )     where    

  

bp =
h

2

12mp
DG

p
DD

 is the ordinary chemical potential of DD theory and

r p .  The coefficient bp  gauges the strength of the DG

effect, and clearly when bp  vanishes, the theory reduces to

ordinary DD theory.  Also evident from its formula, the size of

bp  is set by the DG effective mass mp
DG

 (or the corresponding

tensor) which has been shown to equal the ordinary density-of-
states effective mass mp  in the high temperature limit [7].

To use the foregoing differential equations to analyze de-
vice problems, one needs to formulate appropriate boundary
value problems using boundary conditions that have been dis-
cussed elsewhere [1].  For this paper only steady situations are
considered so the time derivative in (1a)1 always vanishes.

B. Representation of Quantum Confinement

Previous work applying the DG equations to quantum con-
finement has found that DG theory can often be predictive,
accurately capturing the behavior with the DG effective mass

taking its theoretical value mp  [7].  And although in numerous

other circumstances DG theory loses this predictive capacity, it
has been found that the theory can still function as a remarka-
bly accurate phenomenology for fitting quantum mechanical

solutions with mp
DG

 used as the fitting parameter.

The quantum confinement situations considered in this pa-
per are generally extreme ones because, as noted in the Intro-
duction, the imposed confinement and strain are the tools used
to enhance the hole mobility and are chosen as large as possible

in

order to maximize the splitting between the heavy and light
hole bands.  Given this, our approach must necessarily be phe-

nomenological.  To determine mp
DG

 we therefore generate

quantum mechanical hole density profiles for various quantum
wells using the NEXTNANO program [8] as shown in Figs.
1a-c.  The well/barrier materials studied correspond to the
highest mobility situations in the literature for each material
system; these are: InSb/Al0.35In0.65Sb (Fig. 1a, 5nm well, 2.3%
strain), GaSb/AlAs0.24Sb0.76 (Fig. 1b, 7.5nm well, 1.2% strain)
and In0.41Ga0.59Sb/Al0.75Ga0.25Sb (Fig. 1c, 7.5nm well, 2.1%
strain).  Also shown in the Figures are the best-fit DG results in
which the single value of the perpendicular DG effective mass
shown in Table 1 was used in each material for all densities.
Although the agreements are not perfect, it seems clear that the
DG approach does provide an excellent representation over the
range studied.  These values of the DG effective mass are used
in all subsequent calculations.

TABLE I.  SELECTED MATERIAL CONSTANTS

Quantity InSb GaSb InGaSb

LF mobility (cm2/V-sec), well 1230 1350 1500

LF mobility, barrier 50 50 50

Saturation velocity (cm/sec) 8x106 8x106 8x106

DG effective mass ( ) 0.03 0.045 0.048

Schottky barrier (eV) 0.78 1.03 1.0

Band gap (eV), well 0.17 0.62 0.45

Band gap (eV), barrier 0.78 1.66 1.43

Valence band offset (eV) 0.21 0.64 0.43

Dielectric constant, well 17.7 11.6 16.5

Dielectric constant, barrier 15.7 15.7 13

C. Representation of Quantum Tunneling

Quantum tunneling can potentially play a role in the subject
devices by providing pathways for significant leakage currents
to flow through the Schottky gate and/or from source to drain.
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Fig. 4.  Simulated drain characteristics of

InSb, GaSb and InGaSb FETs plus experi-

mental points for InSb from [3].
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Fig. 2.  Schematic of the device structure.
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Fig. 3.  Simulated hole density in a 40nm
InSb FET at pinch-off.

While DG theory is believed to be capable of modeling such
tunneling [9], the scattering-dominated theory outlined in Sect.
II.A is inappropriate because the tunneling is almost always in
an elastic (or quasi-elastic) regime.  Nevertheless, the theory of
Sect. II.A does include a scattering-dominated tunneling proc-
ess that, while unphysical, may still enable a useful phenome-
nology as discussed in [10].  This approach is utilized in our
modeling, largely for qualitative purposes, and the parallel
component of the mass tensor is chosen accordingly.

D. Other Effects

To provide a simple representation of the transport we as-
sume the mobility model:

(3)  
1

μp
tot

=
1

μp
LF

1 + μp
LF E|| vp

sat( )
2

+
1

μp
SS

E

ESS

4

where the first term is a commonly used expression for velocity
saturation, and the second term represents surface scattering.
Some of the constants appearig in this expression are given in
Table I.  The surface scattering model was chosen to fit data of

[3] under strong negative bias (with μp
SS

 = 100cm
2
/V-sec and

ESS  = 3x10
5
V/cm); how well this term represents the other

materials is unknown.

Generation-recombination processes may have to be con-
sidered for the materials of interest, and especially for InSb
with its arrow gap.  For this paper, however, we shall neglect
these processes and this is reflected in the right-hand side of
(1a)1 being zero.  We believe this justified even for InSb be-
cause the strong confinement acts to increase the effective gap
significantly, and because of the very small generation volume.

E. Numerical Implementation

Inserting (1a)2 into (1a)1 eliminates the velocity as a vari-

able so that p and  are then the unknowns.  For numerical

purposes, we have found it convenient to convert p to a “Slot-

boom variable”  defined by p = NA exp 2q kBT( ) .  In

addition, a generalized chemical potential p
DG

p
DG +  is

introduced as a third variable so that each numerical variable

( ,  and p
DG

) then satisfies a second-order PDE. These

equations were solved using the Comsol Multiphysics program,
and the code was found to work quite well with two standard
caveats.  First, the grid has to be sufficiently fine so as to ade-
quately resolve the physics.  And second, the initial guess
needs to be “good enough”.  Our approach to obtaining the
initial guess was to solve the problem first with a much smaller
mass than the actual one so as to aid convergence by weaken-
ing the singular perturbation of the DG term.

 III. SIMULATION EXAMPLES

A. Device Geometry

The device geometry studied in this work is based on an
InSb device design of [3] that had a gate length of 40nm.  The
basic geometry is shown in Fig. 2 where the barrier thickness is
10nm and the gate lengths range from 20-300nm.  The spacing
of the p+-cap regions and the gate size are chosen with high

frequency performance in mind (though T-gates have not been
studied).  The GaSb and InGaSb devices are assumed to have
iden-tical designs except for the thicker channels that experi-
mentally were important for achieving the highest mobilities
[4,5].

A sample DG
solution is illustrated
in Fig. 3 for the InSb
FET of [3] with a
40nm gate length.  In
the 2D plot, the
simulated hole den-
sity at pinch-off is
shown with the quan-
tum confinement of
the carriers in the
channel being evi-
dent.  From a num-
ber of such solutions
at various gate
biases, the drain
characteristics can
be assembled as
shown in Fig. 4 for
VD = -0.5V.  In the
plot we show the
experimental I-V
data from [3] as well
as simulated curves
for the comparable
InGaSb and GaSb
devices.  For the
InSb, simulation and
experiment are seen
to be in good agree-
ment with the drop
in calculated drain
current at higher
negative bias being
due to the turn-on of
the Schottky barrier
under forward bias.
And the leakage
current seen under positive bias in the InSb FET is readily
shown to be associated with the low valence band offset and
resulting current flow in the barrier regions.  Leakage currents
associated with source-to-drain tunneling are not seen even
when the parallel component of the DG effective mass tensor is
made very small.

For a more general comparison of the three types of anti-
monide devices, we consider their perfomance with VCC = 0.5V
as was assumed in [3].  To aid in the comparisons, we follow
[2] in calculating certain benchmarks like the on-off ratio

ION IOFF( ) , the gate delay CGVD ION( ) , and the energy-

delay-per-unit-width CGVD ION x CGVD
2( ) .  One informative

plot is the gate delay versus the on-off ratio in which each point
corresponds to a different choice for the threshold voltage [2].
The results for 40nm FETs made of each material is shown in
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Fig. 6.  Simulated energy-delay versus gate

length for the InSb, InGaSb and GaSb FETs.
Also shown are the data from [4].

Fig. 5.  Simulated gate delay versus on/off

ratio for 40nm InSb, GaSb and InGaSb

pFETs along with the operating point for

the experimental device of [4].
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Fig. 5 along with the operating point of the InSb device of [3].
All the devices have similar minimum values of gate delay,
however, the simulations show that the high leakage level of
the InSb device greatly limits one’s ability to reach on-off ra-
tios much above 100, whereas the other materials allow ratios
of 10

4
 and even 10

5
 to be reached.

To study how the behavior of these heterostructure FETs
depends on gate length one needs a scaling strategy.  For this
paper, the scaling strategy is based on Fig. 5 and its tradeoff
between gate delay and on-off ratio.  In such a plot, one can
define an optimum as occurring at the “knee” of the character-
istic, where further improvements in on-off ratio become quite
costly in terms of gate delay (if they can be achieved at all).
Using similar plots for each each material and each gate length
allows us to map out a sequence of “optimum” threshold volt-
ages in each case, and in this way to obtain a projection of the
scaling behavior.  The results are shown in Figs. 6 and 7 for the
energy-delay product and on-off ratio, respectively.  In Fig. 6,
data from [4] is also included and is seen to be in reasonable
agreement with the simulation.  One basic point illustrated by
Fig. 6 is the general advantage the antimonide devices have
over silicon technology in terms of energy-delay product.  In
addition, the plots in Figs. 6 and 7 suggest that the InSb devices
can provide the fastest switching but only with a substantial
penalty in on-off ratio that likely would make them less suit-
able for logic applications.  Alternatively, if on-off ratios of
around 100 were sufficient for one’s application, then the oper-
ating points of the InGaSb and GaSb devices could be adjusted
so as to give them faster operation.   Further such simulations
that together allow for an overall evaluation of the three Sb-
based material systems as p-channel FETs will appear in a fu-
ture publication.

 IV. FINAL REMARKS

In this paper we have outlined a density-gradient theory ap-
proach to modeling Sb-based p-channel FETs.  The theory’s
basic equations have been presented and their main underlying
assumptions have been noted.  A key step in such modeling is
the phenomenological representation of the hole gas that allows
the strong quantum confinement to be described and with strain

effects included.  The theory was then illustrated by using it to
analyze particular FET designs that had InSb, GaSb and In-
GaSb channels with state-of-the-art transport properties.
Lastly, simulations were presented that indicate a route to
evaluating the scaling properties of these FETs.
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