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Abstract—The properties of silicon nanowire (SNW), resulting 
from the band structure calculation using a four-orbital sp3 tight-
binding method, are discussed in this paper. A number of 
intrinsic properties including band gap, density of states and 
parabolic effective masses have been derived from the computed 
electronic structure for different SNW widths. A self-consistent 
solver of coupled 3D Poisson-Schrödinger equations using the 
tight-binding model has been developed to analyze the effect of 
gate bias on the SNW band structure at room temperature. The 
spatial distribution of carriers in the nanowire is calculated and 
the impact of gate bias on subbands is discussed. Finally, effective 
mass model is compared to tight-binding model to assess the 
validity of this approximation in narrow SNW. 

Band structure; silicon nanowire; self-consistent solution; 
tight-binding 

I. INTRODUCTION  
With the downscaling of bulk MOS transistors and the 

issues encountered to keep on improving their performance, 
new architectures are becoming of great interest. Conventional 
transistors begin to evolve towards 3D nonplanar devices at 
nanometer scale. Among these new architectures, nanowire 
transistors are promising devices. Indeed, it is predicted that 
narrow nanowires with a surrounding gate will lead to superior 
electrostatic control of the conductivity in the field effect 
transistor channel. Recently, the fabrication of silicon 
nanowire (SNW) transistors with nanometer diameter has been 
demonstrated by various experimental groups [1-3]. 

Nevertheless, as the dimensions of future devices approach 
the atomic scale, simulation appears to be essential for a better 
understanding of electronic transport in these devices. In 
particular, the band structure calculation is a crucial step to 
obtain the electronic material properties, which are necessary 
for transport simulation. In order to describe the SNW 
electronic structure and transport properties, several methods 
can be used: ab initio methods [4][5], kp method [6], pseudo-
potential method [7] and tight-binding method [8]. In this 
paper, we chose to use a tight-binding (TB) model [9], which 
is a semi-empirical method based on a set of parameters fitted 
to accurately reproduce the electronic structure obtained by ab 
initio calculations or experiments. This method has the 
advantage of dealing with larger systems and being faster than 
ab initio methods, while keeping a good description of 
electronic structure. 

In Sec. II, the TB model used for describing SNW band 
structure is detailed. Then, electronic structure is computed 
and intrinsic properties are calculated for different widths of 
SNW with a square cross-section. In Sec. III, the effect of gate 
bias on the band structure is discussed thanks to a self-
consistent Poisson-Schrödinger solver. Finally, in Sec. IV, the 
validity of the effective mass approximation is studied and 
corrections are proposed to obtain a better agreement with TB 
model for wire (W) width down to 2 nm. 

II. BAND STRUCTURE CALCULATION 

A. The tight-binding model 
The TB model used is a sp3 third nearest neighbors three 

centers model optimized to accurately reproduce the effective 
mass values of bulk silicon [8] [10]. The tight-binding fitting 
parameters for Si, employed in this work, have been taken 
from [10]. In order to calculate the electronic structure, an 
infinite silicon nanowire with a square cross-section and 
oriented along [001] is considered. The unit cell is carved out 
of the bulk silicon by keeping all atoms inside a 
parallelepiped. At the surface, dangling bonds are saturated 
with hydrogen atoms in order to avoid energy states in the 
band gap. This approach does not take into account surface 
reconstruction effects but succeeds in describing the quantum 
confinement [10]. 
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Figure 1. Conduction band structure and density of states of a [001]-
oriented Si nanowire of 5 nm in width. 
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Because of 2D quantum confinement in SNW, the 
reciprocal space is restricted to 1D and the first Brillouin zone 
extends over [-π/L;π/L], where L is the length of the unit cell. 
For a [001]-oriented Si nanowire, L is equal to the lattice 
parameter (a0 = 0.543 nm). In bulk Si, conduction bands have 
six minima, which belong to six valleys named Δ valleys. 
These six minima are localized at 0.83 from the Γ point along 
the X direction. In SNW, the position of conduction band 
minima is different and depends on the nanowire orientation. 
Indeed, the six Δ valleys of bulk Si are projected on the 
nanowire axis. For a [001]-oriented Si nanowire, the six Δ 
valleys split into two groups: one group of four valleys 
([100 ], [ 001 ], [ 010 ] and [ 010 ]) is projected at k = 0 and 
the other group ([ 001 ], [ 100 ]) is projected at |k| ~ 0.33π/L. In 
the considered range of SNW widths (2 nm ≤ W ≤ 20 nm), the 
minimum of the conduction bands occurs at k = 0, therefore 
SNW is a direct band gap material contrary to bulk Si. 
Furthermore, as the nanowire width decreases, the subband 
minima of the second group (at |k| ~ 0.33π/L) progressively 
shift towards k = 0. The density of states can be computed 
from the band structure. It is composed of Van Hove peaks 
corresponding to energy subbands. Fig. 1 shows the 
conduction band structure and density of states of a [001]-
oriented Si nanowire of 5 nm in width. 

It should be noted that the electronic band structure 
significantly evolves according to the nanowire width. 
Consequently, intrinsic properties like band gap and effective 
mass evolve as well. The variations of the energy gap εg and 
of the effective mass values as a function of the nanowire 
width are plotted in fig. 2 and 3, respectively. The effect of 
quantum confinement on the band gap is clearly shown with a 
dramatic increase of εg as the width is reduced below 5 nm. 
The effective mass values are extracted at the energy minima 
of the two groups of valleys previously described thanks to, 
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where n is the subband index. The effective mass calculated 
for the first subband at k = 0 corresponds to the transverse 
mass of the bulk Si (mt

* = 0.19 m0), while the effective mass 
calculated for the first subband at |k| ~ 0.33π/L corresponds to 
the longitudinal mass of bulk Si (ml

* = 0.916 m0). It is 
observed that for large cross sections of nanowire, the bulk 
mass values are recovered. More generally, nanowire 
electronic properties tend towards those of the bulk, when the 
nanowire width increases. 

B. Self-consistent calculation of band structure 
In order to investigate the role played by the gate bias Vg 

on the band structure, we have coupled the TB Schrödinger 
equation to a 3D Poisson solver. The SNW is now surrounded 
by two dielectric materials (1 nm of interfacial SiO2 layer and 
3 nm of HfO2) and a mid-gap metal gate. The dielectric 
materials are treated as a continuum medium through 
dielectric constants equal to 3.9 for SiO2 and 19 for HfO2. 
SNW are assumed to be undoped, so that the Fermi energy εF 
is located at the middle of the band gap at Vg = 0 V. 

 

 
For each gate bias, Schrödinger's and Poisson's equations 

are self-consistently solved at room temperature in order to 
obtain the electron density and the potential inside the 
nanowire. Fig. 4 shows the cartographies of electron density 
for 2 nm and 5 nm-wide nanowires. In the narrower nanowires, 
the electrons are localized at the centre while they are closer to 
Si/SiO2 interface in the larger nanowires. The effect of gate 
bias on band structure is shown in fig. 5 and 6. The band 
structure is plotted at Vg = 0 V and Vg = 1.5 V for [001]-
oriented Si nanowires of 2 nm and 5 nm in width, respectively. 
We observed that the bias has little impact on the dispersion 
relation E(n,k) inducing a very slight modification of masses as 
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Figure 2. Evolution of band gap as a function of the width for a [001]-
oriented Si nanowire. 

Figure 3. Evolution of electron effective mass  values of the first 
subband at k = 0 (a) and at |k| ~ 0.33π/L (b) as a function of the width for 

a [001]-oriented Si nanowire. m0 is the electron mass. 
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a function of the gate bias. When Vg varies from 0 V up to 
1.5 V, the effective mass of the first subband at k = 0 increases 
of 0.5% (respectively 2.7%) for a 2 nm-wide (respectively 
5 nm-wide) SNW. The modification of effective mass at 
|k| ~ 0.33π/L is still negligible (0.1%) for a 5 nm-wide SNW. 
While the effective masses extracted from the curvature of the 
energy subbands are not much sensitive to the gate bias, the 
quantum confinement varies significantly with Vg. This alters 
the energy levels. The band structure is not simply shifted by a 
constant, but the energy difference between two subbands is 
modified when the gate bias is ranged from 0 V up to 1.5 V. As 
illustrated in fig. 6, the variation of the relative position of two 
subbands is more important for large nanowires. 

III. COMPARISON WITH THE EFFECTIVE MASS APPROACH 
In this section, tight-binding model and effective mass 

approximation are compared. For both models, the same 
geometry and dimensions are considered and dielectric 
parameters are identical. The comparison between both models 
focuses on the electron density and the potential inside the 
nanowire. 

 

 

 
First, the calculations with effective mass model are done 

without correction: the effective mass values for each valley 
correspond to the bulk values (ml

* = 0.916 m0 and 
mt

* = 0.19 m0) and the nonparabolicity coefficient α is set to 
0 eV-1. The number of electrons ne in the unit cell derived from 
atomistic and effective mass model is plotted in fig. 7 for a 
large range of gate voltages. Without correction in the effective 
mass model, ne for both models matches for large nanowires 
(W ≥ 5 nm) but not for narrow nanowires (W < 5nm). As 
illustrated in fig. 7, the threshold voltage shift between both 
series of results increases when the nanowire width decreases. 
Consequently, for narrow nanowires (W < 5 nm), the 
corrections to the effective mass model are necessary to obtain 
a better agreement with the tight-binding model.  

In order to reduce the threshold voltage shift, the bulk 
effective masses are replaced by those resulting from the band 
structure calculation using tight-binding model (cf. fig. 3). 
These corrections lead to a clear improvement. Indeed, the 
threshold voltage shift is strongly reduced even for narrow 
nanowires (cf. fig. 8). This improvement is explained by the 
fact that with corrections the energy levels computed with 
effective mass approximation are closer to those computed 
with tight-binding model. 
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Figure 4. Electron density in a section of [001]-oriented Si nanowires of 
2 nm in width (top) and of 5 nm in width (bottom) at Vg = 1.5 V. 

Figure 6. Band structure of a [001]-oriented Si nanowire of 5 nm in 
width at two gate biases Vg = 0 V (left) and Vg = 1.5 V (right). 

Figure 5. Band structure of a [001]-oriented Si nanowire of 2 nm in 
width at two gate biases Vg = 0 V (left) and Vg = 1.5 V (right). 
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IV. CONCLUSION 
By comparison with the bulk silicon, silicon nanowire has 

a direct band gap. Intrinsic properties evolve according to the 
nanowire width. Indeed, the energy gap and the effective mass 

values increase with the reduction of width. Thanks to self-
consistent simulations, the effect of gate bias on the band 
structure of a nanowire has been highlighted. The gate bias 
does not modify the subband shape of the band structure, but 
alters the energy difference between two subbands. Finally, 
the comparison between effective mass and tight-binding 
models made appear that corrections to the effective masses 
are required to maintain a good agreement with the tight-
binding model for nanowire width lower than 5 nm. 
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Figure 7. Comparison of the number of electrons in the unit cell 
between tight-binding model (TB) and effective mass approximation 

(EMA) without corrections 

Figure 8. Comparison of the number of electrons in the unit cell 
between tight-binding model (TB) and effective mass approximation 

(EMA) with corrections. 
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