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Abstract— The discrete nature of dopants  becomes apparent in 
nano-scaled devices leading to microvariability problems which 
cause large fluctuations in the performance of macroscopically 
identical devices.  Since self-averaging fails, the approach 
reviewed here utilises self-consistent non-equilibrium Green 
function  modelling to evaluate the effects of discrete random 
dopants  in source and drain non-perturbatively. 
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I. INTRODUCTION 
Silicon nano-transistors have been demonstrated with 5 nm 

channel lengths [1]. But a major issue confronting the 
extension of the road map is the micro-variability problem: 
devices which are fabricated to the same macroscopic 
specification (doping densities, feature sizes and scales, edge 
and interface definition) will have different device 
characteristics (threshold voltage, channel conductance, current 
drive) because the discrete nature of the dopants and the 
random variability in edge/interface definition means that each 
device is microscopically different. This causes large 
differences between the performances of individual devices. 
New device architectures may help; and here we focus on two 
classes of MOSFET: the double gate device (Fig. 1a) and the 
wrap-round gate nanowire device (Fig. 1b). Although the 
impact of discrete dopants  in the device channel has been 
studied extensively less attention has been focussed on the 
granularity of the source-drain regions. An elegant 
experimental study [2] has shown directly that the source-drain 
extensions in quite large conventional MOSFETs show charge 
granularity. This work inspired a first attempt to understand the 
issues using a self-consistent 2D Green function simulation of 
double gate devices [3]. The results are summarised in section 
III. However, once it is necessary to treat dopants as discrete it 
becomes crucial to study the problem in three dimensions 
especially as quantum confinement becomes important. For 
this purpose we have developed a fully self-consistent non-
equilibrium Green function (NEGF) simulator [4] for treating 
the problem non-perturbatively (section II). Self-consistancy, 
imposed by coupling the transport equations to Poisson’s 
equation ensures a correct treatment of charge conservation and 
screening. 

 
 

 

Figure 1 (a) Double Gate  
                    Device 

Figure 1 (b) Wrap-round        
gate device 

For n-channel devices the source/drain doping involves 
attractive Coulomb centres (ionized donors) which within the 
quantum transport theory of nanowires give quite different 
effects to repulsive Coulomb centres associated with acceptors 
(section IV). The attractive potentials create quasi-bound 
electronic states which lead to both zeros and resonances in the 
energy-resolved transmission function. Both Breit-Wigner and 
Fano resonances occur as anticipated in simplified model 
studies [5-10]. These effects are highly sensitive to the shape of 
the self-consistent impurity potentials and to the proximity to 
boundaries. Only now have we been able to achieve stable 
convergent solutions to the 3D NEGF simulator for narrow 
channel n-channel devices with localised donors [11]. These 
effects underpin the influence of discrete donors in source and 
drain on threshold voltage and current behaviour (section V).  

II. GREEN FUNCTION METHODOLOGY 
The Green function methodology is defined in detail 

elsewhere [3, 4] . An appropriate effective-mass Hamiltonian is 
used to define the energy-resolved retarded Green function 
GR (r, ′ r ;E)  and corresponding advanced Green function 
GA  that describe the steady-state quantum kinetics. These are 
used to compute the less-than Green function G<(r, ′ r ;E) . 
The energy-resolved charge density and current density follow: 

n(r, E) = (−i /2π)G<(r,r;E )  (1) 

 
J(r,E) = (− ie=

2
m−1*)•[∇ − ′ ∇ ]G <(r, ′ r ,E) | ′ r =r  (2) 
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For a single-body pure quantum state of energy E described 
by an extended wave function ψ(r;E)  the function 
G<(r, ′ r ;E)  corresponds to the correlation function: 

g(r, ′ r ;E) =ψ *(r;E )ψ( ′ r ;E)  (3) 

The thermally averaged Green functions determine the 
charge density which is used to compute the electrostatic 
potential using Poisson’s equation.  The electrostatic potential 
is fed back into the effective Hamiltonian so that the impurity 
potential is self-consistently screened. The iterative cycle is 
continued until convergence is achieved (typically 25 
interations). A set of sophisticated recursive algorithms reduce 
the complexity of the problem and implement the contact 
boundary conditions [4, 6, 12]. 

III. 2D MODEL FOR SOURCE AND DRAIN DOPING    
We have previously studied the effect of deviations from 

doping uniformity in source and drain on the performance of 
sub 20 nm silicon double-gate MOSFET devices [3]. The 
model assumed a continuous charge distribution with randomly 
located regions of high doping: the aggregation model. 
Individual dopants were not resolved. Incoherent impurity 
scattering in the source and drain regions was neglected. The 
current-voltage characteristics ID-VG were computed for 
devices that differed only in the microscopic arrangement of 
the randomly distributed high doping regions. We also studied 
devices that differed in the number of these clusters. An 
ensemble of devices with fluctuating numbers of clusters was 
constructed based on a Gaussian distribution centered on the 
mean cluster number derived from the average doping 
concentration in the source/drain. An average lateral symmetry 
was assumed for the double gate MOSFET. Therefore,  only 
inhomogeneities in the doping in the plane of the simulation 
were considered. The devices studied had 12 nm channel 
lengths. Fig. 2 shows a typical dopant aggregation distribution 
with the corresponding electrostatic potential and electron 
density computed from the self-consistent 2D method. The 
computed current-voltage characteristics (Figs. 3-4) are 
monotonic and they are most strongly affected by the 
fluctuations in the total number of high doping regions (Fig. 4). 
Threshold voltages shifts around 100 mV and on-current 
fluctuations around 50 percent are obtained from the 
simulations. However, the sub-threshold slope is almost 
independent of the microscopic cluster distribution. 

IV. 3D SCATTERING ON ATTRACTIVE POTENTIALS 
In the absence of impurities the energy-resolved 

conductance of a hard walled straight nanowire is a stepped 
function of energy, each step corresponding to the onset of a 
new conducting channel associated with the lateral sub-band 
structure. For negatively charged impurities these steps are 
smeared out to an extent that depends on the numbers of 
impurities. In rare cases, two negatively charged impurities 
may be closely in line with the channel such that a quasi-bound 
state exists between the two. This rare case is a special example 
of a much more common situation that arises with positively 
charged impurities in gated devices as we explore later.  

Figure 2: 2D NEGF study of Double Gate Device (12 nm channel) 
Showing dopant aggregation clusters, electrostatic potential and 

electron density 
 

Figure 3: Current – Voltage Characteristics : 2D model  
               spatial disorder 

 
 

Figure 4: Current - Voltage Characteristics : 2D model 
                number fluctuations 
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Single positively charged impurities provide a wealth of 
features in quantum transport [5-10]. The energy-resolved 
conductance may exhibit a dip preceding each conductance 
step (except the first step). The dips are due to back-scattering 
by a quasi-bound state originating from an evanescent mode in 
the next sub-band. This is a multi-mode effect. Early studies of 
this effect [10] used delta function models requiring over 100 
modes to obtain convergent results. The general interaction 
between a discrete state in the continuum and the continuum 
leads to a quasi-bound state and a characteristic resonant line 
shape in the transmission or energy –resolved conductance: the 
Fano effect. The form of the Fano resonance is complicated by 
the parameters of the originating  attractive potential and the 
effects of size confinement. Simple models have been invoked 
to explain Fano resonance phenomena in nanowires but 
without using Coulomb potentials or indeed electrostatically 
self-consistent potentials or taking into account realistic device 
geometries. All the resonance phenomena previously reported 
from non-self consistent simplified models  are found to occur 
in our self-consistent NEGF studies of discrete dopants ([11, 
14] and to be reported in detail elsewhere).  

Following [11] in Fig. 5 we give a schematic of the self-
consistent potential for a single attractive Coulomb impurity in 
the centre of a wrap-round gate nanowire transistor (2.2 nm X 
2.2 nm X 14 nm; 10 nm channel) below threshold. The source 
and drain are considered to be continuously doped in this case 
with a doping concentration of 1020cm−3 . Here, in the absence 
of the impurity the potential profile along the channel is the 
normal barrier potential. Adding the attractive Coulomb 
potential  burns a hole in this profile to produce the sombrero 
shape. In the absence of size confinement this self-consistent 
potential has discrete bound states and a continuum set of states 
with an embedded quasi-bound state. The latter is a resonant 
tunnelling state. This state aids the screening of the impurity by 
allowing charge to accumulate in the effective quantum well. 
The geometry of the device is crucial. The lateral size 
quantization induces sub-band structure which picks up the 
resonant levels in different modes leading to complex Fano 
structures. The principal effect of the resonant tunnelling level 
is to induce a strong resonant peak following the onset of each 
sub-band transmission step as shown in Fig. 6. The plateau 
structure is lost because of reflection (scattering) from the 
impurity except at the resonance where unit transmission 
ensues. Thus the net conductance is substantially reduced. In 
Fig. 7 we compare the off-current behaviour for the impurity 
free channel with that having a single attractive Coulomb 
impurity at the channel centre. The off-current is significantly 
increased by the impurity, partly due to reduction of the gate 
barrier and partly to the introduction of the resonant tunnelling 
channel. By turning on the gate potential the sombrero shaped 
potential may be tuned in shape and strength to alter the 
transmission profiles. Moving the impurity towards the 
boundaries reduces the effect. 

V. 3D MODEL OF SOURCE AND DRAIN DOPANTS 
 
Let us now consider a 3D wrap-round gate device with 
atomically resolved source and drain [14].  

 

Figure 5: Self-consistent potential in channel: schematic 
 

Figure 6: Transmission as a function of energy for wrap-round 
nanowire device with a single attractive Coulomb centre in middle 

of channel at different gate voltages. Channel length 10 nm. 
Source/Drain doping continuously doped at 1020 cm-3. 

 

Figure 7: Off – Current versus gate voltage characteristics with  
               and without attractive impurity 

 

Devices with 2.2 nm X 2.2 nm cross section with un-doped 
channels with lengths 4 nm to 6 nm were studied. The source 
and drain extensions are each resolved atomically over regions 
of length 4 nm beyond which the doping is treated as 
continuous (a good approximation within mean field theory).  
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Figure 9: Configuration layout (3D model)  

Figure 10: Electron density (full line) and Potential (dashed line) 
Shading shows transition to continuum doping. 
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Figure 11: Current-Voltage Characteristics for smooth doping 
model versus 3 discrete dopant configurations (3D model) [14] 

Figure 12: Transmission as function of energy for gate voltage 0.4 V 
For continuous doping and discrete dopant variants of source and 

drain doping  (3D model) [ 14] 
The doping is set at 1020cm−3  leading to just two dopants in 

each of the source and drain extensions. The configurations  for 
4 devices are shown in Fig. 9. The effective masses of the 
valleys are extracted from Tight Binding calculations [13]. Fig. 
10 shows the potential profile and electron density in a cross 
section through the middle of the device for case Ra. The 
results follow the pattern discussed in IV: the potential around 

each dopant has a deformed sombrero structure. The barrier 
lowering and resonant tunnelling allow charge to accumulate 
near the impurity and help screen the bare Coulomb potential. 
Fig. 11 shows a set of current-voltage characteristics on linear 
and log scales for the four configurations[14]. The average 
threshold voltage shift is 20 mV. The sub-threshold slope 
becomes worse for the case of the impurities aligned in the 
middle of the wire. In general, the sub-threshold slope changes 
as a function of the particular impurity configuration. The 
effect of the discreteness of the impurities on the on-current is 
more dramatic. The on-current in the Cr case is 30% of the 
corresponding value for the smooth case, whereas for the Ch 
case the current is 73% of the smooth device.  

The current-voltage characteristics may be understood from 
the transmission curves for the different configurations. Fig. 12 
gives the results for VG = 0.4 V. The resonant structure is 
complicated, but as before, the electrons are partially reflected 
due to the impurity potential, decreasing the total transmission 
except at resonance. At low gate bias, this effect is less 
noticeable due to the gate barrier and quite similar to the 
smooth one. The transmission in the smooth device is higher 
than in the Ch device for the energy intervals (0.5,0.55) and 
(0.6,1.0) eV, but in the interval (0.55,0.6) eV the transmission 
in the Ch device is higher than in the smooth one (the Fermi 
energy at source is 0.19 eV)., produces similar values for both 
devices.The backscattering increases with gate bias  yielding a 
low transmission except around the resonance energies. It 
follows that at high gate biases, the difference between the 
currents of the smooth device and the other devices increases. 
At VG ≥ 0.4 V the transmission for the Ch case becomes larger 
than for the Ra and Cr cases in the interval (0.0,0.3) eV except 
around the resonance peak. Since the Fermi level in the source 
is ~ 0.2eV, we expect more current in the Ch case than in the 
other two cases. 
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