
Three-Dimensional Topography Simulation Using
Advanced Level Set and Ray Tracing Methods

Otmar Ertl and Siegfried Selberherr
Institute for Microelectronics, TU Wien

Gußhausstraße 27-29/E360, A-1040 Wien, Austria
Email: {ertl|selberherr}@iue.tuwien.ac.at

Abstract—We present new techniques for three-dimensional
topography simulation of processes for which ballistic transport
can be assumed at feature-scale. The combination of algorithms
and data structures lent from the area of computer graphics
allows a fast and memory saving solution of various deposition
and etching processes.

I. INTRODUCTION

Topography simulation requires two essential ingredients:
A method to track the surface and a method to determine
the local surface velocities. Various combinations of meth-
ods to handle both tasks in three-dimensions are discussed
in [1]. A new combination using the level set method for
surface representation and a Monte Carlo method for flux
calculation was recently reported [2], [3]. In the following
we describe techniques which enable topography simulations
of large three-dimensional geometries.

II. SURFACE EVOLUTION

A. Level set method

In three dimensions the level set method has become widely
accepted for surface tracking [4]. The surface is implicitly
described as zero level set of a function Φ

S = {x | Φ(x) = 0}. (1)

The time evolution of the surface S can then be described by
the level set equation

∂Φ
∂t

+ V (x)‖∇Φ‖ = 0, (2)

where V (x) is the surface velocity field. The level set function
is usually discretized on a regular grid. The original level set
technique stores and integrates the level set values of all points
in the grid over time, leading to a non-linear scaling of memory
and computational costs with surface size. To reduce both
down to linear order, we use the sparse-field level set method
[5] in combination with the recently developed hierarchical
run-length-encoded level set data structure [6].

B. Sparse field level set method

The sparse-field level set method is a further development of
the narrow band method [4]. This method reduces the narrow
band to just one layer of active grid points, namely all points
for which

|Φ(x)| ≤ 0.5 (3)

is fulfilled. Therefore, the calculation time is reduced to a min-
imum, since only the level set values of a minimum number of
grid points have to be integrated over time. For the calculation
of derivatives also the level set values of neighboring grid
points have to be known. Therefore, additional layers of grid
points are necessary. Their level set values are determined by
the sparse field level set method using a simple update scheme,
which is performed after each time integration step. A further
advantage of the sparse-field level set method is that it does not
require periodic re-initializations like the narrow band method.
Moreover, the velocity field V (x) has to be only calculated
for all active grid points. If the surface velocity is determined
directly for these points [7] the time consuming fast marching
method for the velocity extension [4] can be avoided.

C. Hierarchical run-length encoding

To store a level set function, we use the hierarchical run-
length encoding data structure [6]. It only stores the level
set values at grid points which are near the surface. For all
other grid points just the signs of their level set values are
stored using run-length encoding. The memory requirements
follow an optimal linear scaling with surface area. Sequential
traversal is also optimal, while random access to grid points
is of sub-logarithmic complexity. The availability of the sign
of the level set function for all grid points makes this data
structure especially convenient for multi-level-set methods,
where boolean operations like union or intersection can be
expressed as the minimum or maximum of two level set
functions, respectively [8]. The computational costs of these
operations using this data structure are of linear complexity.

D. Multiple materials

To represent regions of different materials the geometry is
divided by level sets. One way is to describe each material
region Mk by one enclosing level set function Φk [9]

Φk(x) ≤ 0 ⇔ x ∈ Mk. (4)

However, with this representation very thin layers with thick-
nesses smaller than one grid spacing cannot be resolved. To
circumvent this problem, we describe a stack of materials
M1,M2, . . . ,MK , where M1 denotes the substrate, by choos-
ing N level sets in such a way that

Φk(x) ≤ 0 ⇔ x ∈
k⋃

i=1

Mi. (5)

8-5-1978-1-4244-1753-7/08/$25.00 ©2008 IEEE

Only the top most level set function MK is integrated over
time. However, in case of etching processes the different
etching rates are incorporated during time integration. All
other level set functions are adjusted following

Φ(t+Δt)
k (x) = max(Φ(t)

k (x),Φ(t+Δt)
K (x)). (6)

III. SURFACE VELOCITY CALCULATION

To determine the surface velocities the transport and surface
reaction equations have to be solved. We focus on processes
which can be described by ballistic transport at feature-scale.
The incoming arrival angle distribution Γsrc(t) is assumed to
be known at a certain plane P just above the surface. The flux
distribution at the surface is given by

Γ(x, t)dΩ =

⎧⎪⎪⎨
⎪⎪⎩

−t · n(x)
‖x − x′‖2

Γsrc(t) dA′ if x′ ∈ P
−t · n(x)
‖x − x′‖2

Γre(x′, t) dA′ if x′ ∈ S
(7)

where x′ is the origin of a ray with direction t hitting the
surface at point x. n(x) is the surface normal at point x. The
re-emission of particles is described by

Γre(x, t) =
∫

Q(n(x); t, t′)Γ(x, t′) dΩ′. (8)

Here Q denotes the transmission probability function. The
surface velocity is assumed to be of the form

V (x) :=
∫

Γ(x, t)Y (n(x); t) dΩ, (9)

where Y is the yield function.

A. Direct integration

A common approach for the solution of this system of
equations (7) - (9) is direct integration. However, in its general
form these equations require a discretization of the surface and
also of the solid angle for each surface point. This would result
in a huge system of linear equations, unfeasible for three-
dimensional problems. Therefore a common simplification is
to neglect the dependence of the re-emission on the incoming
direction [10]

Q := Q(n(x); t). (10)

Then the system of equations can be reduced to relations
between the total incoming fluxes F (x), which avoids the
directional discretization

F (x) =
∫

P
vis(x,x′)

−t · n(x)
‖x − x′‖2

Γsrc(t) dA′+

∫

S
vis(x,x′)

−t · n(x)
‖x − x′‖2

F (x′)Q(n(x′); t) dA′.
(11)

Here vis(x,x′) is the visibility function which is either 1 or
0 dependent on whether the points x and x′ are in line of
sight or not. However, it is still a demanding task to solve
this surface integral equation. Generally, each surface element
contributes to each other surface element, if it is in line of
sight, resulting in a dense system matrix. Therefore both, the

memory requirements and the calculation time for solving this
linear system of equations, are expected to follow O(N2), N
denoting the number of discretized entities. For setting up the
equation matrix an even worse scaling can be expected due to
the visibility check [11].

B. Monte Carlo method

Another way to calculate the surface velocities is ray
tracing, a widely used technique in computer graphics to
render three-dimensional scenes efficiently. There, millions
of rays are calculated to get a realistic picture. Analogously
we calculate a huge number of particle trajectories. Each
time a particle hits the surface, it contributes to the local
surface velocity. Then the particle is re-emitted following the
directional distribution (8). A weight factor, which describes
the probability of the particle, is adjusted after each re-
emission according to the directional distribution. This factor
is used to describe the statistics correctly and is incorporated,
when the contribution of a particle to the surface velocity is
calculated. The particles are tracked as long as they do not
leave the simulation domain upwards or their weight factor
goes below a certain limit.
The main computational task within this method is to calculate
the intersection of a ray with the surface. Various algorithms
and data structures were developed to reduce the calculation
time [12]. We use spatial binary subdivision to reduce the
effort of calculating one particle ray down to order O(log N)
[7].
To achieve a certain statistical accuracy the number of simu-
lated particles has to increase with the surface area. Therefore,
the whole algorithm scales like O(N log N).
In our simulator ray tracing is directly applied to the im-
plicit level set representation of the surface. Three-linear
interpolation within one grid cell is used to calculate ray-
surface intersections. Hence, no explicit surface representation
is needed during the whole simulation, which results in savings
of memory and computation time.
The surface velocity is directly determined for all active grid
points. A disk of certain radius is defined for each active point
p as shown in Figure 1. The disk is orientated normal to the
gradient ∇Φ(p) and its distance d is given by

d :=
Φ(p)

‖∇Φ(p)‖ . (12)

Thus, the center point of the disk is an approximation of the
closest surface point, which guarantees that the disk positions
are close to the surface S.
All particles hitting the disk contribute to the surface velocity
at p according to the yield function in (9). Particle trajectories
are tracked for a certain distance after intersection with the
surface S to calculate the surface velocity properly.

C. Parallelization

The most time consuming part in each time step of the
simulation is the surface velocity calculation. However, by
nature, since individual particle trajectories are completely

8-5-2

p

S

��������

�

	�
�

Fig. 1. For each active grid point p a disk is defined. All particles impinging
on the disk contribute to the surface velocity of p. Particle trajectories are
tracked for a certain distance beneath the surface S to obtain a representative
flux distribution on the disk.

independent from each other in the ballistic transport regime,
the Monte Carlo method can be easily parallelized, especially
on shared memory architectures. We used OpenMP [13] to
distribute the surface velocity computation over multiple cores.

IV. EXAMPLES

In the following we demonstrate the capabilities of our
simulator using the above described level set and ray tracing
techniques on various examples. For all examples symmetric
boundary conditions were assumed for the lateral directions.
Since all our data structures are adaptive, the vertical direction
is unbounded.

A. Simple deposition process

To prove that ray tracing is also convenient to determine
the surface rates for large geometries we applied a deposition
process to a test structure with a lateral resolution of 500×500.
The result is shown in Figure 2. The process was modeled
using a sticking probability of 0.5. The directional distributions
of incoming and re-emitted particles were assumed to follow
a cosine distribution. In this simulation all higher order re-
emissions were incorporated. Due to the adaptiveness of all
data structures the total memory consumption does not exceed
500 MB.

B. Reactive ion etching

Figure 3 shows the final profiles after the application of
etching processes in SF6/O2-plasma with different amount of
oxygen. Model and parameters were taken from [14]. The
model is based on a Langmuir-Hinshelwood-type adsorption
model and incorporates three kinds of species: ions, inhibitors,
and etchants. Coverages are introduced for inhibitors and
etchants to describe the surface kinetics. Specular reflexions
and the energy distribution of ions are also taken into account.
The dependence of the sputter yield on angle of incidence and
ion energy is modeled as well. In contrast to direct integration
methods, all these effects can be easily included using ray

Fig. 2. Deposition process with sticking probability 0.5 applied to a test
structure. Lengths are given in multiples of grid spacings.

tracing.
Within this model the sticking probabilities depend on the
coverages, which again are obtained from the site balance
equations under pseudo-steady-state assumptions. Therefore,
the transmission probability function in (8) depends on the
flux distribution itself, leading to a recursive problem. In our
simulation we use the fluxes calculated in the previous time
step to determine the coverages.

C. Bosch process

As demonstration of our multi-level-set framework we
simulated a Bosch process using the model given in [15].
Figure 4 shows the final profile after 10 deposition and etching
cycles, respectively. This alternation of process steps requires
an accurate description of very thin layers as provided by
our multi-level-set method. In this simulation three level set
functions are used to describe the substrate, the mask, and
the polymer layer. If the polymer layer is locally completely
removed during a time step, the different etching rates are
adequately taken into account during level set time integration
to enhance accuracy.

V. CONCLUSION

We presented techniques for the efficient solution of to-
pography processes, for which ballistic particle transport can
be assumed. The application of modern level set and ray
tracing algorithms results in an O(N log N) scaling of the
computational costs and an optimal O(N) scaling for the
memory requirements, which allows the simulation of large
three-dimensional structures. Furthermore, the Monte Carlo

8-5-3

Fig. 3. Reactive ion etching of Si in SF6/O2-plasma with increasing amount of oxygen from left (without oxygen) to right, which leads to sidewall passivation
and hence to more isotropic etching. Mask etching is also incorporated.

Fig. 4. The profile after 10 cycles of a Bosch process. The polymer surface
is colored black. Three different level set functions are used to describe the
geometry.

approach for surface velocity calculation supports the incor-
poration of more complex models, which account for example
for specular reflexions or energy dependent effects.

REFERENCES

[1] U.H. Kwon, W.J. Lee, Thin Solid Films 445/1, pp. 80-89, 2003.
[2] B. Radjenović, J.K. Lee, Proc. 17th ICPIG, Eindhoven, the Netherlands,

17, pp. 142-145, 2005.
[3] D. Kunder, E. Bär, Microelectron. Eng. 85, pp. 992-995, 2008.
[4] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge

University Press, Cambridge, 1999.
[5] R.T. Whitaker, J. Comp. Vision 29/3, pp. 203-231, 1998.
[6] B. Houston, M.B. Nielsen, C. Batty, O. Nilsson, K. Museth, ACM Trans.

Graph. 25/1, pp. 151-175, 2006.
[7] O. Ertl, C. Heitzinger, S. Selberherr, Simulation of Semiconductor Pro-

cesses and Devices 2007, T. Grasser, S. Selberherr (eds.), Springer Wien
New York, pp. 417-420, 2007.

[8] A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, The Visual Computer
11/8, pp. 429-446, 1995.

[9] Z.-K. Hsiau, E.C. Kan, J.P. McVittie, R.W. Dutton, IEEE Trans. Electron
Devices 44/9, pp. 1375-1385, 1997.

[10] T.S. Cale, G.B. Raupp, J. Vac. Sci. Technol. B 8/6, pp. 1242-1248, 1990.
[11] P.L. O’Sullivan, F.H. Baumann, G.H. Gilmer, J. Appl. Phys. 88/7, pp.

4061-4068, 2000.
[12] V. Havran, Heuristic Ray Shooting Algorithms, PhD thesis, Czech.

Technical University, Prague, 2001.
[13] OpenMP C and C++ Application Program Interface. Available from

http://www.openmp.org.
[14] R.J. Belen, S. Gomez, D. Cooperberg, M. Kiehlbauch, E.S. Aydil, J.

Vac. Sci. Technol. A 23/5, pp. 1430-1439, 2005.
[15] G. Kokkoris, A. Tserepi, A.G. Boudouvis, E. Gogolides, J. Vac. Sci.

Technol. A 22/4, pp. 1896-1902, 2004.

8-5-4

