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Abstract—This paper presents a Lattice Boltzmann Model 
applied to phonon transport in silicon-based films, implemented 
with the OpenLB library [1]. This model is based on the 
discretization of Boltzmann equation with the “gray” model for 
phonons. By this approach we can treat heat transfer in complex 
structures and various materials. We have validated our model 
by comparing temperature profiles and thermal conductivities in 
thin films to literature data. Finally, we discuss an improvement 
of the method in the ballistic case. 

Fully Depleted MOSFET, Silicon On Insulator, phonon 
transport, heat transfer, Lattice Boltzmann Method. 

I.  INTRODUCTION 
n present microelectronics, architectures such as FDSOI 
transistors (Fully Depleted Silicon On Insulator) illustrated 
in Figure 1 have been built to improve the electrical 

performances. Although the insulating BOX fulfills the 
electrical insulation requirement, it also increases the self-
heating of the transistor because of limiting the spreading of 
phonons to the substrate. 

The classical Fourier Model (FM) can not address thermal 
simulations of such advanced devices since the characteristic 
lengths are far below the phonon mean free path (mfp~300nm 
in bulk silicon at 300K). FM does not take into account neither 
ballistic behaviour of heat transfer at such time and spatial 
scales nor interactions between high-energy and high-speed 
phonons (i.e. interactions between optical and acoustic ones). It 
results in minimizing the temperature elevation in the device 
[2]. Instead, we should use the Boltzmann-Peierls (BP) 
equation which describes precisely the transport phenomena 
[3]. Unlike most of works on this topic, we use a Lattice 
Boltzmann Method (LBM), a recent fast computational, 

multiscale and multidisciplinary method [4]. 

In this work we present a simple “gray” model on the basis 
of the LBM. We will demonstrate its validity through a very 
good agreement with other numerical methods and with 
experimental data. Then we will propose and discuss the 
original solution we have developed to address purely ballistic 
transport. 

II. LATTICE BOLTZMANN MODEL 

A. Lattice Boltzmann Equation 
In the relaxation time approximation, the BP equation can 

be written as (1): 
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where f is the distribution function of phonons, c the phonon 
group velocity, τ the mean relaxation time over all interactions 
between phonons, f 0 the Bose-Einstein equilibrium function (2) 
and peQ −  the phonon generating rate. 

Considering a phonon population with a given frequency 
and the associated group velocity, taking a constant time step δ 

t<<τ (I1), the exact solution of (1) at a position x and at time t 
is developed in Taylor series at first order in tδ  [5]: 
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where 
τ
δ

τ
t=1  is the normalized relaxation rate. Equation (3) is 

called the Lattice Boltzmann Equation (LBE) for phonons and 
is an explicit iterative scheme to solve the native BP equation. 

Before explaining the algorithm of the LBM, we show that 
(3) leads to FM in the diffusive limit, i.e. for Knudsen number 
Kn below 10-2. Kn is defined as the ratio between the phonon 
mfp and the feature size of the device. Defining the heat flow 
and the thermal conductivity as follows: 
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Figure 1 Schematics of the FDSOI device. 
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where D is the density of states in silicon,  the Planck 
constant and T the local temperature, we make a multiscale 
expansion [4] of (3) (for sake of simplicity, phonon generation 
rate omitted) and thus find: 
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Equation (6) is the Cattaneo hyperbolic equation for heat 
transfer, which leads to FM in the steady state. 

B. Lattice Boltzmann Model 
Now we develop the LB scheme in the “gray” model 

approximation: the phonon dispersion is taken to be a Debye 
approximation with constant group velocity whatever the 
frequency considered. 

Keeping the time step tδ  and the velocity c constant, we 
also discretize the spatial domain with a regular mesh of lattice 
step tcx δδ .= . In between two neighbouring cells the phonons 
travel quasi-ballistically because of (I1). Into each cell, the 
propagating directions are discretized and, in 2D, this results in 
the so-called D2Q8 lattice with 8 propagating directions ci (see 
Figure 2 inset) with corresponding distribution functions fi 
(i=1..8). Each fi function is governed by equation (3). The 
iterative scheme is done in two steps: collision and streaming. 
The collision step depicting interactions between phonons: 
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The second step is the streaming step along each 
propagation direction: 

),(),.( dttfdtttf iii +=++ xcx δ  (8) 
In Figure 2, we can see that the velocity vectors ci have not 

the same norm, resulting in unphysical anisotropic transport. 
To recover isotropy, we affect a weight wi to each direction i: 
these weights are calculated to respect isotropy relations [4]. 
For D2Q8, diagonals have a weight of 1/20 and the others 
directions are weighted by 1/5. 

To cover the whole frequency range of phonons, we use 
energy density e instead of distribution function fi, defined by: 
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By integrating (7) using (9), we obtain an analogous LBE 
for each energy density function ei: 

( ) ipeiiiii Qttetetettte ,
0 .),(),(1),(),( −′+−=−++ δ

τ
δδ xxxcx , (10) 

where Q’e-p,i is the heat generation power. The relaxation rate 
1/τ  is an average value over the whole phonon frequency 
range. 0

ie  is the energy density at thermodynamic equilibrium, 
given by: 
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Using the energy conservation principle on (9), the local 

equivalent temperature can be defined using: 
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C. Boundary conditions 
Two different boundary conditions have been implemented. 

We can either impose a temperature value and then the 
incoming energy density according to (12). Or we can impose a 
normal-to-the-surface heat flow: in the “gray” model, from (4) 
and (9), the heat flow is q=ce since the phonon group velocity 
is constant; hence, the energy density along an incoming 
direction i+ from the opposite outgoing one i- is: 
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where n is the incoming unitary vector normal to the surface. 

In addition to these boundary conditions, we have 
introduced a specularity parameter in order to treat from 
diffusive to specular boundaries. On a diffusive boundary, 
outgoing components are isotropically distributed onto all 
incoming directions, whereas on a specular boundary outgoing 
ones are reflected on incoming directions with respect to the 
surface. Finally, we have introduced a transmission parameter 
to mimic the effects of the interface resistance and thus have a 
partially transparent partially specular boundary. 

Moreover, as we can see on Figure 1, we have to simulate 
heat transfer in several materials (we do not deal with metals 
where heat is carried mainly by electrons, not by phonons [3]). 
The interface is modelled by the theory of Narumanchi [2], 
where the transmission coefficients are computed by the 
diffusive mismatch model [6] and discretized according to the 
LBM. Dealing with two different materials implies two mean 
group velocities and so two spatial steps. Instead, we choose a 
non constant time step which complies with both materials 
properties. 

III. RESULTS AND DISCUSSION 
After implementation using the OpenLB C++ library [1], 

we have performed several simulations to validate the model in 
regard to other equivalent models and experimental data. 

Figure 2 Spatial discretization and D2Q8 lattice. Phonons must 
travel along these directions. 
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A. LBM temperature profiles 
First a planar thin silicon film has been considered. Figure 

3 presents the temperature profile across the film for several 
Kn, from diffusive to ballistic regimes, (mfp=41nm). As Kn 
increases, temperature discontinuities appear at film boundaries 
and temperature profiles go flat, i.e. the effective thermal 
conductivity decreases with the film thickness. Theses results 
are in very good agreement with other simulations [7][8] and 
the temperature jumps can be seen as boundary thermal 
resistances. 

We have computed the transient temperature in a quasi-
ballistic case (Kn=0.5). The whole structure is at 300K and at 
t≥0 the temperature on the lower boundary is fixed to 301K. 
Figure 4 shows instantaneous temperature profiles in the 
silicon film. Ballistic phenomena appear in temperatures jumps 
at boundaries; however the inner temperature profile follows a 
slight parabolic trend like in diffusive regime. 

B. Thermal conductivities 
Figure 5 presents the evolution of the effective cross plane 

thermal conductivity versus thickness of the planar silicon film. 
We have used a constant relaxation time of 6.54ps [2]. This 
value has been derived carefully from Holland’s model [9], 
averaged over all acoustic modes and taking into account 

isotope, normal and Umklapp scattering processes. We thus 
show that at room temperature our model is in good agreement 
with both experimental data and the analytical model of Liu 
and Ashegi [10]. In [10], the thermal conductivity is calculated 
analytically with a relaxation time taking into account a 
geometrical factor and three polarization modes of phonons, 
which can explain the discrepancy with our work. 

Table 1 presents computed thermal conductivities in some 
other materials at 300K. We have used the model developed in 
[11] to compute relaxation times depending on doping 
concentration and scattering on both grain and film diffusive 
boundaries. Without any fitting parameter and a constant size 
of silicon grains, we are in good agreement with the 
experimental data. 

Besides, we have computed the cross-plane thermal 
conductivity in an amorphous SiO2 film. We have used the 
equivalent formulation developed by Anderson and Freeman 
[12], leading to an equivalent mfp of is 0.58nm. This value 
leads to a relaxation time of 0.14ps. In a 50nm-thick film 
(Kn~0.01), the LBM computed thermal conductivity is 
1.385W/mK, in excellent agreement with the commonly 
measured value of 1.38W/mK [2]. As mentioned above, this 
result shows that the LBM is equivalent to FM in the diffusive 
regime and can be used instead of coupling with a Fourier 
solver to simulate heat transfers in SOI structures. 

C. 2D SOI structure simulation 
Finally, we have performed a 2D simulation of a SOI 

device shown in Figure 6. This structure has been taken from 
Narumanchi et al. [2] for comparison. Figure 6 shows the 
temperature contours at steady state. The peak temperature in 

Figure 4 Transient temperature profiles across a 82nm-thick silicon 
layer with an imposed mfp of 41nm; lengths and temperatures are 

normalized respectively by the layer thickness and the total imposed 
temperature variation. 
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Figure 3 Steady state temperature gradients cross a silicon film for 
different Kn; lengths and temperatures are normalized respectively by 

layer thickness and total temperature variation (1K). 
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TABLE I.  IN-PLANE THERMAL CONDUCTIVITIES FOR SINGLE-CRYSTAL 
AND POLY-CRYSTAL SILICON FILMS AT 300K. THE RELAXATION TIME GIVEN 

IN SECOND COLUMN IS COMPUTED AS IN [11]. 

Material (Si) Relaxation 
time (ps) 

In-plane thermal 
conductivity (W/mK) 

[10] (exp. data) This work 
Bulk 6.53 148 146 

1µm-layer 6.42 140 139 
B-doped (1019 cm-3)

3µm-layer 6.22 130 135 

poly-crystal 1µm-layer 1.65 13.1 15.4 
B-doped (1.6*1019cm-3)
poly-crystal 3µm-layer 2.51 45.6 41.3 
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the hotspot is 322K, to be compared to 326.4K in [2]. The 
difference can be explained by a slightly different specific heat 
and so for the local thermal conductivity. 

IV. DISCUSSION OF D2Q24 LATTICE 
Due to the discretization scheme D2Q8, we encounter some 

unphysical effects with our model in ballistic regime. This 
spatial propagation discretization anisotropy is emphasized by 
a too small relaxation rate inherent to ballistic transport. 

We propose to increase the propagation directions number 
and we introduce a new lattice with 24 directions as shown on 
Figure 7. It can be considered as a projection of the 4-cells-
radius circle on the mesh. The weights associated to each 
direction can not be derived with the same method as the 
D2Q8 lattice because this lattice is not fully isotropic (not 
invariant under the rotation group). Yet, the phonon gray 
model can be viewed as a diffusion hydrodynamic model, 
where such an isotropy is not necessary. Then we compute the 
weights according to symmetry and geometric angles. Figure 8 
sums up the repartition of these weights at a normalized 
distance of 4 cells in inset. The resulting energy distribution 
with D2Q24 mimics rather well the exact isotropic repartition 
(straight line) of a point generation source compared to the 
D2Q8 result (dotted line), but this quality diminishes with the 
distance to the source point. The use of the D2Q24 in the 
LBM environment is our principal perspective. 

V. CONCLUSION 
In this work we have implemented a phonon transport 

model based on the Lattice Boltzmann scheme and on the 
“gray” model, using the OpenLB library. Boundary conditions 
take into account both specularity and thermal resistance. 
Complex 2D structures can be simulated thanks to the included 
treatment of interfaces. We have validated this model for 
steady state and transient temperature profiles; Computed 

thermal conductivities at room temperature in various media 
are in good agreement with experiments. 2D simulation of a 
SOI structure is consistent with results in literature. We also 
propose a new lattice to go beyond the numerical limits of 
classical D2Q8 lattice in the ballistic case, i.e. to preserve 
isotropic propagation. 
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Figure 7 D2Q8 and D2Q24 lattices. 
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Figure 6 Steady state temperature profiles using a D2Q8 LBM (72nm-
thick silicon layer on 243nm-thick SiO2 layer, width of 1633nm, [2]). 
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Figure 8 Angular energy density dispersion extracted in D2Q24 
lattice (see Fig 2 and insert; bold arrows: D2Q8 sampling directions) 
from a punctual ballistic and isotropic phonon source; straight line: 

analytic solution, dotted-line: D2Q8 and dashed-line: D2Q24. 
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