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Abstract—A methodology to include quantum corrections in 3D 
Monte Carlo simulations is presented, based on the Density 
Gradient formalism. Three flavours are introduced, with 
increasing degrees of self-consistency between the current, field 
and quantum correction and compared in terms of accuracy and 
impact on the current voltage characteristics.   
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I.  INTRODUCTION 
The continued scaling of MOSFETs with both conventional 

and novel architectures enhances the role of non-equilibrium 
transport and quantum phenomena requiring increasingly 
detailed and complex simulation techniques.  Most of the now 
widely researched multigate devices are 3D in nature and thus 
require full scale 3D simulations [1]. 3D simulations are also a 
necessity when studying statistical device variability 
introduced by discreteness of charge and matter [2]. The Monte 
Carlo (MC) approach offers a compromise between the 
computationally efficient but oversimplified Drift Diffusion 
(DD) technique [3], and cumbersome full-scale quantum 
transport simulations [4] in the 3D simulation domain. 3D MC 
simulations are also a necessity when studying transport 
variability due to scattering from the unique surface roughness 
and body thickness patterns [5] and the random discrete 
dopants in nanoscale CMOS devices [6]. Inherently semi-
classical in nature, the MC approach can be enhanced by the 
introduction of quantum corrections with a different level of 
sophistication and accuracy. Typically, quantum effects are 
introduced into MC via corrections applied to the driving force 
[7]. Most of the MC quantum correction techniques so far have 
been developed, demonstrated and restricted to 2D simulations, 
with the few published quantum correction examples applied in 
3D based on the Effective Potential [8] and Schrödinger-based 
[9] approaches. 

Here, we discuss in detail the accuracy and convergence 
properties of a new flavour of 3D Density Gradient [10] 
quantum corrections introduced in a fully self-consistent 
manner to 3D MC simulations specifically designed to avoid 
the previously reported shortcoming of the DG approach [7]. 
We compare the self-consistent simulations with results 
obtained using a ‘frozen field’ MC approximation and a 
‘frozen quantum corrections’ approach. 

 
Figure 1. Flowchart showing the steps necessary for FFMC, FQMC and 
SCQMC simulations.  

II. SIMULATION METHODOLOGY 
In the ‘frozen field’ approach (FFMC), used previously to 

study scattering from quantum confinement fluctuations in thin 
body devices [5], the quantum corrected potential is calculated 
from a DD simulation with Density Gradient quantum 
corrections, and is used in the MC module as the driving force 
for the particles, but is never updated.  

The ‘frozen quantum corrections’ approach (FQMC) 
extracts the quantum correction term from initial DD 
simulations, but this time only the quantum corrections are 
stored and remain frozen, while the classical part of the 
potential is updated during the MC simulation via solution of 
Poisson’s equation based on the updated electron distribution 
after each time step. Hence, the driving force, Fq, is calculated 
using: 
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 Fq = −∇(ψcl +ψqc )  (1) 

Where ψcl is the classical potential and ψqc the stored 
correction term. 

In the third, fully self-consistent, approach (SCQMC) the 
quantum correction is updated periodically throughout the 
course of the simulation. This is achieved by solving the 
density equation for electrons in respect of the electron 
concentration nq: 
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Where φn is the quasi Fermi level, and bn = 2/(12qm*) and 
〈…〉t indicates a time-averaged value. A Maxwell-Boltzmann 
equation of state is assumed when deriving (2) [11]. Equation 
(2) is discretized using the finite box method, the 
corresponding system of equations is linearized and solved 
using a Red-Black SOR iterative scheme, which is easily 
amenable to parallelization. From the solution for nq, which is 
reasonably smooth as a result of the averaging, a new value for 
ψqc is obtained using: 
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The frequency of gathering statistics for time-averaging and 
for the solution of (2) remains subject to trial and error and 
requires further investigation perhaps being dependent on the 
architecture of the device in question, and the applied bias. 
Guide values ranging of 10 fs and 400 fs respectively have 
been successfully employed. As discussed in [12,13], the 
employment of Neumann boundary conditions at the source 
and drain end contacts when quantum corrections are employed 
in the simulations is necessary in order to prevent depletion in 
the contact regions that can lead to significant instabilities as 
the level of self-consistency increases. 

The FFMC, FQMC and SCQMC methods are illustrated in 
the flowchart in Fig. 1, showing the additional steps needed as 
the level of self-consistency increases.  

The test structure is a double gate (DG) MOSFET 
(illustrated in Fig. 2), with a 40 nm square channel and silicon 
body thickness of 2.4 nm. The oxide thickness is 1 nm and the 
doping is 2×1020 cm-3 in the source and drain, and 1×1014 cm-3 
in the channel. Simulations at VD = 1 mV and 0.7 V have been 
carried out using DD and all three MC simulation methods. 
Fig. 3 compares the vertical potential obtained from DD, 
FQMC and SCQMC (gate to gate, as indicated in Fig. 2) at low 
VD (where non-equilibrium effects are limited) showing an 
excellent agreement between the three simulation techniques. 
Also shown is the electron distribution through the same plane 
(this time including FFMC), which demonstrates an equally 
good match. 

 
Figure 2. Schematic of the DG device used in this work, showing the 
plane through which Fig. 3 is taken (dashed line) and the region selected 
for Fig. 6 (dotted line).  

 

 

Figure 3. Vertical potential and electron distribution at VD = 1 mV from 
DD, FFMC (electron distribution only), FQMC and SCQMC showing good 
agreement. 

 

III. RESULTS AND DISCUSSION 
Fig. 4 compares the ID-VG characteristics at low and high 

VD obtained using all simulation methodologies. At low VD the 
DD simulations are calibrated by setting the low field mobility 
(μ0) to that obtained at the source end of the channel (where ID 
is determined [11]) in the equivalent FQMC simulation. At 
high VD, a lateral field mobility model described by (4) is used 
with μ0 calculated as before and the saturation velocity (vsat) set 
to the peak velocity obtained in the FQMC simulation, 
allowing for a good comparison between DD and MC. 
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Figure 4. ID-VG characteristics at VD = 1 mV and 0.7V from all 
simulators. 
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 Here, FFMC fails to accurately reproduce the value of ID 
achieved by the other MC methods and the calibrated DD 
simulation. The explanation of this can be found in Fig. 5, 
which shows the velocity profiles from the MC simulations. 
The FFMC fails to account for the change of field moving from 
the source to the channel, hence the velocity adjusts much 
slower than the self-consistent MC simulations, giving an 
incorrect profile at the source end of the channel where ID is 
determined [14]. Fig. 6 shows a comparison of the electron 
distribution in the silicon layer at VD = 1 mV from DD and 
FQMC showing an excellent agreement between the two. 

 
  

Figure 5. Velocity profiles at VD = 0.7 V for FFMC, FQMC and SCQMC 
and potential profile from FQMC. 

 

 Additionally, it can be noted that there is close 
agreement between the ID-VG characteristics of FQMC and 
SCQMC, suggesting that frequent updating of the DG 
correction is unnecessary as the dynamic coupling between 
transport and field can be achieved via the solution to Poisson’s 
equation alone, as with classical MC simulations. The 
correction, frozen or otherwise, accounts for the confinement 
effects, giving the correct shift of the electron concentration 
peak away from the oxide interface (as demonstrated in Fig. 3) 
along with the threshold voltage shift (as demonstrated in Fig. 
7). 

 

 

 
Figure 6. 3D view of the electron concentration in the drain end silicon layer 
(see Fig. 2) from DD (top) and FQMC (bottom) simulations at VD = 1mV.  

 

 

 

Figure 7. ID-VG characteristics obtained using classical and quantum DD and 
FFMC simulations at VD = 1 mV demonstrating that the shift in VT expected 
from the introduction of quantum corrections is captured by both methods. 
The device used in for this comparison was identical to that used in the course 
of this paper, except with a 50 nm square channel. 
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IV. CONCLUSIONS 
We have presented a new methodology for incorporating 

Density Gradient quantum corrections into 3D MC simulations 
in a succession of increasingly self-consistent approaches. The 
fast, efficient FFMC approach has been expanded to FQMC 
and SCQMC approaches that add self-consistency with field 
and quantum correction respectively. We have been able to 
demonstrate the limitations of the FFMC as the applied drain 
voltage and the longitudinal field in the channel increases and 
transport becomes increasingly non-equilibrium, which this 
version of the methodology fails to accurately account for. The 
close agreement of FQMC and SCQMC suggests that self-
consistency with the quantum correction term is not massively 
important, and that the introduction of quantum effects in this 
manner need only capture effectively the shifts in peak electron 
concentration and threshold voltage. 
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