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Abstract—The paper addresses the calculation of the band
structure for different phases of the chalcogenide Ge2SbaTe;
compound, which is raising considerable interest in view of the
applications to the nonvolatile-memory technology. The band
structure is necessary for determining the charge- and heat-
transport properties of the material. The band diagram of the
face-centered cubic phase, which is the most important one for
the operation of phase-change memories, is shown for the first
time.

I. INTRODUCTION

Charge- and heat-transport properties of the chalcogenide
GeoSboTes (GST) material, suitably modeled for describing
phase-change memory devices, are presently the main focus
of a number of research activities geared toward the applica-
tion of this material in nonvolatile-memory technology. The
principle of chalcogenide memory was first proposed in the
late 1960s by Ovshinsky who reported the observation of a
reversible memory switching in chalcogenide materials [1].
In the last years, semiconductor industries have considered
the exploitation of the same concept for large-size, solid-
state, non-volatile memories, which nowadays seem to be very
promising in terms of both performance and scalability per-
spectives. More recent papers deal with the general principle
of switching in view of the application to rewritable optical
media [2], [3], or with possible conduction models in view of
the applications to memories [4], [5]. GST may be found in
either crystalline or amorphous phase. The crystalline phase
of GST has two possible structures: a stable hexagonal (HEX)
structure and a metastable face-centered cubic (FCC) structure.
However, since the metastable phase crystallizes faster, during
a fast phase-change switching event involving the crystalline
structure GST is always in the FCC phase [6], even though
real structures exhibit some distortion.

Chalcogenide materials can act as semiconductors. For the
case of GST, the crystalline gap has been evaluated from
optical-absorption measurements to be 0.5 eV [4]. This result
is confirmed in [7], where partial density-of-state results are
shown for the rock-salt-like crystalline and amorphous phases.
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Fig. 1. Atomic arrangement of the hexagonal (left) and FCC (right) GST,

showing the stacking sequence along the crystalline planes shown.

For investigating the transport properties of the material,
including all the relevant scattering mechanisms, the informa-
tion about the band structure is fundamental. So far, a few
papers show detailed analyses of the band structure for the
hexagonal GST (e.g., [8]). In contrast, no band diagrams for
the FCC phase of GST have been published, at least in the
authors’ knowledge, despite the fact that such a phase is much
more important for the device design, as mentioned above.

The calculation of the band structure of the FCC phase
is substantially more complicated than that of the hexagonal
phase because of the much larger number of atoms involved in
the cubic stacking. The latter, in turn, is due to the movement
of a sub unit of the hexagonal cell [9]. In this paper we address
for the first time the calculation of the band structure of GST
in the FCC phase.

II. CALCULATION DETAILS

Most of the results shown in this paper have been calculated
by means of the density-functional-theory (DFT) equations.
The DFT calculations have been performed with the Quantum-
ESPRESSO code [10] using the local-density approximation

P-27-1

229



2.0

o
o
|

energy (eV)

r~
o
|

-4.0

paans:

N A RNSEN N

N

H

1
K4
-

Fig. 2. Band structure of the hexagonal phase in the first Brillouin zone for the top of the valence band and the bottom of the conduction band (the Fermi
level is at 0 eV). The calculation has been carried out using the plane-wave basis set.

by Perdew and Zunger for the exchange-correlation energy
functional. The electron-ion interaction is described by norm-
conserving ionic Bachelet-Hamann-Schluter pseudopotentials
available in public databases (e.g., [11] and references therein).
The valence configurations are 4s24p?, 5s525p®, and 5525p* for
Ge, Sb, and Te, respectively. The scalar relativistic pseudopo-
tentials are calculated without non-linear corrections.

In the plane-wave basis set used for the expansion of atomic
orbitals, the cutoff in the kinetic energy was set to 80 Ry. In
fact, this was a conservative choice: several preliminary tests
showed that the changes in the results become irrelevant when
the energy cutoff exceeds 40 Ry.

To check the consistency of the results a second approach
has also been exploited, based on the Hartree-Fock method
with a linear combination of atomic orbitals (LCAO). Specif-
ically, Gaussian functions have been selected as basis set
for the latter. These calculations have been carried out with
CRYSTALO6 [12], featuring the restricted Hartree-Fock theory
with LCAQ. Periodic boundary conditions have been applied
in both approaches.

Besides the need of checking consistency, another reason
for using the Gaussian functions as basis set is that the
computational load is expected to be smaller than in the plane-
wave case.

ITII. RESULTS

A major issue concerning the band calculation is that of
relaxation: the initial placement of the atoms within the unit
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Fig. 3. Density of states (DOS) calculated from the bands of Fig. 2.

cell, albeit taken from the available crystallographic data, does
not coincide in general with the configuration of minimum
energy of the structure. As a consequence, such a configuration
must be sought by a preliminary calculation which is, typically,
the most computationally demanding part of the analysis. On
the other hand, if this step is skipped the calculated bands will
not be realistic.

For checking purposes the calculations have preliminarily
been carried out on the hexagonal structure, using a unit
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cell with 9 atoms arranged in the same stacking sequence
(Te — Ge — Te — Sb — Te — Te — Sb — Te — Ge) reported in
[9] and shown in Fig. 1. After relaxation we have found
a little shrinkage in the lattice parameters, Aa ~ —1.5%,
Ac =~ —2.1%, consistently with the parametrization of the
pseudopotentials used in the calculation. At the end of the
relaxation stage, the internal planes of the unit cells are
slightly shifted from their theoretical positions (Az < +1%),
still preserving their original space-group symmetry. The full
calculation required one week on a 24-parallel processor Intel
Xeon Linux cluster, most of it devoted to relaxation.

Figs. 2 and 3 show the band structure of the hexagonal
phase in the first Brillouin zone, and the corresponding density
of states, for the top of the valence band and the bottom of
the conduction band (the Fermi level is at 0 eV). The actual
calculation was performed over an energy interval larger than
that shown. The results confirmed those of [8].

The LCAO method proved to be more efficient due to
the smaller number of terms required to describe a localized
system. On the other hand, the typical basis sets available
from the software libraries were developed for the purpose of
tackling single atoms or simple molecules, not crystals; hence
they exhibit a number of Gaussian functions of the diffused
type (namely, having a very large standard deviation). As a
consequence, a direct introduction of such basis sets into an
analysis code for band calculation does not provide realistic
results, and in most cases prevents convergence as well.

The calculation for the case of interest was carried after a
large number of numerical experiments, in which the diffused
parts of the single-atom basis sets have been removed and the
coefficients of the remaining parts have been optimized to re-
produce the plane-wave results. The experiments were carried
out by introducing the new basis sets into CRYSTALO6.

This part of the work eventually provided an LCAO basis
set able to reproduce the band shape calculated with the plane
waves. The dimensional variation of the unit cell from the
experimental values is analogous to the one determined with
the other method. Moreover, in contrast with the outcome of
the plane-wave method, the output of the second calculation
demonstrates the existence of a band gap for this material.
This is in qualitative agreement with the optically-determined
data of [13], even though band gaps determined by Hartree-
Fock calculations tend to be overestimated (opposite to what
is usually obtained by means of DFT equations [14]). The
bands thus calculated are shown in Fig. 4; the corresponding
density of states does not differ significantly with respect to
that shown Fig. 3. The total calculation time was reduced to
less than two days.

Finally, the same procedure depicted above has been re-
peated for the FCC phase. Following the findings of [9], the
FCC structure can be built starting from the hexagonal phase
by translating the Te — Sb — Te — Ge sub-unit along the [210]
direction to create a vacancy site. As a consequence, the FCC
cell is composed of 27 atoms and 3 vacancies, this resulting
in a computational burden substantially larger than that of the
hexagonal phase (about four times).
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Fig. 4. Same bands as in Fig. 2 calculated using the Hartree-Fock method
with LCAO.

After relaxation, the lattice is a distorted FCC cell with
internal planes deviating from their theoretical positions. The
amounts of the deviations and of the cell vectors are compa-
rable with those of the hexagonal cell, never exceeding 2%.

Fig. 5 shows the density of states for the FCC phase
calculated with the plane-wave method. The band structure in
the first Brillouin zone is shown in Fig. 6. In the figures only
the top of the valence band and the bottom of the conduction
band are shown. As expected from the experimental findings
of [13], an indirect gap of about 0.1 eV for the FCC phase
is found. The transition from the hexagonal to the FCC phase
implies the introduction of some degree of disorder in the
lattice, e.g., a number of vacancy sites, making the band gap
to increase. Even though DFT calculations fail in determining
the exact value of the band gap, the method is reliable in
reproducing trends like a band-gap increase or decrease. Such
a trend is also consistent with the experimental value of the
band gap of the amorphous phase of the same material, which
is 0.7 eV instead of 0.5 eV as in the crystalline phases.

It is worth noting that, except for the above considerations
about the band gap, the overall shape of the valence band
found in the hexagonal phase is conserved in the FCC struc-
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Fig. 5. Density of states (DOS) calculated from the bands of Fig. 6.
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Fig. 6. Band structure of the FCC phase in the first Brillouin zone for the top of the valence band and the bottom of the conduction band (the Fermi level

is at 0 eV).

ture, as also shown by the comparison of the two densities
of states. The same main peaks can be recognized in both
plots; a more detailed inspection shows that the shape of
the valence band in the FCC phase is broader than in the
hexagonal phase, which, on the contrary, has sharper peaks and
a more pronounced fall towards the core levels (this happens
in an energy range not reported in Fig. 5).

In contrast to the case of the hexagonal cell, the use of the
Hartree-Fock and LCAO methods, along with the basis set
optimized in the previous case did not improve the calculations
in a satisfactory way. The obtained band diagram qualitatively
confirms the findings of the plane-wave method, but the details
of the bands are poorer. Further calculations with a differently-
optimized basis set, including a higher number of Gaussian
functions, seems necessary to obtain a better representation.
This, however, increases the computational burden signifi-
cantly and prevents an overall speed-up of the simulation,
whose duration becomes comparable with that of the plane-
wave method.

IV. CONCLUSION

The band structure of the hexagonal and (for the first time)
FCC phases of chalcogenide GezSbyTes have been calculated
by means of the DFT method using plane waves. To implement
the analogous calculation based on the LCAO method, which
is expected to be computationally more efficient, a number
of new basis sets (one for each chemical species involved)

have been derived and optimized. The procedure worked well
for the hexagonal phase and the time needed to complete
the computation was reduced to one third. The simulations
carried out on the FCC case show that a different set of
optimized Gaussian functions is necessary to achieve the
same computational improvements. The band structure of the
hexagonal and FCC phases of the chalcogenide GezSbyTes
obtained from this investigation will constitute the basis for
the analysis of the transport properties of the material.
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