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Abstract—Recently, we have proposed a new method for device
simulations which allows for splitting the device area into a set of
independent elements and computing all the physical observables
in the form of local spectral representation. The shape of the
device elements and their internal coordinate representation are
arbitrary which offers a natural way to treat singular dopant
charge distribution by choosing appropriate device fragmentation
scheme. We have applied our method to study the impact of an
attractive ion in intrinsic Si channel to the MOSFET transport
characteristics. We have observed an intrinsic bistability in
biased MOSFETs related with two possible ion charge screening
mechanisms.

I. INTRODUCTION

Recent progress in semiconductor industry has been largely
stimulated by decreasing size of CMOS (complementary
metal-oxide semiconductor) elements. Present-day technology
makes it possible to fabricate CMOS based field-effect tran-
sistors with channel length of 45 nm, and MOSFET with
much shorter channel 10 nm are predicted to become mass-
produced within few technology generations. Scaling towards
miniaturization has led to the development of a variety of
novel devices such as double gate transistors, carbon nanotubes
and gate-all-around (GAA) MOSFET nanowires. One of the
major sources of variability of these structures is random
discrete dopants distribution. As the size of CMOS shrinks,
variation in dopant position leads to measurable difference in
macroscopic parameters, such as drive current and leakage.
Dopants could also be used as a functional part of device.
Electron tunneling through isolated dopants has been observed
in GaAs/AlAs heterostructures [1] and spectroscopy of a single
dopant in nanowire has been reported recently [2]. Strong
influence on dielectric environment on dopant scattering and
electron mobility in semiconductor nanostructures has also
been predicted [3]. Variability in the dopants position is inher-
ently three-dimensional problem and development of effective
tools for modeling such effects is still imperative. Application
of the Non Equilibrium Green’s function (NEGF) formalism
with ordinary real space grid representation is hampered by
increasing number of the mesh points and huge size of the
device Hamiltonian. Accurate numerical study of the attractive
ions is especially difficult. In nanoscale regime, the device

electrostatics is strongly affected by the screening charge,
which in turn is sensitive to the position of the resonant
levels in screened attractive Coulomb potential. Moreover,
interaction of the resonant states at different Coulomb centers
depends on the quantum phases, which implies that the wave
function needs to be computed accurately at the Coulomb
centers. In this work we show that our method gives such
accurate solutions with minor extra computational efforts. We
perform self-consistent three dimensional quantum transport
simulations for the MOSFETs with single attractive ion in the
intrinsic Si channel and study its impact on the device transport
characteristics.

II. R-MATRIX THEORY AND DEVICE GROWTH ALGORITHM

In this section we outline the R-matrix theory of quantum
transport [4] and summarize our computational procedure. We
shall restrict our consideration to the simplest case of the
electronic wave function Ψ(r) in parabolic conduction band
and put m∗ = h̄ = 1. In order to avoid the real space grid
representation, we construct Ψ(r) as a linear combination of
real-valued basis functions {Φn(r)}. Then, the one-particle
Hamiltonian

H = −1
2
∇2 − eϕ(r) (1)

is completely defined by the corresponding matrix elements
Hnm = (Φn|H|Φm). Importantly, the basis functions Φn(r)
must be free from any kind of homogeneous boundary con-
ditions in order to describe a non-zero electric current. As
a result, the matrix element of the kinetic energy contains a
non-symmetric surface contribution and the Hamiltonian H
is not Hermitian. We introduce the effective close system
Hamiltonian H̃ with symmetrized kinetic energy

H̃nm =
∫

dr
[
1
2
∇Φn(r)∇Φm(r)

− Φn(r)eϕ(r)Φm(r)] (2)

and use its eigenvalues

H̃Φn = EnΦn. (3)
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as the basis functions. Then an arbitrary wave function is
represented in the form [4]

Ψ(r) =
∑

n

Φn(r)
2 (En − ε)

∑
ν

〈Φn|ν〉Iν , (4)

where 〈...|...〉 stands for integration over the device surface,
{|ν〉} is a supplementary surface basis and Iν ≡ 〈ν|dΨ

dn 〉 play
a role of unknown parameters. We introduce the R-matrix Rνµ

which, by definition, gives a linear relation between the wave
function and its normal derivative Iν on the device surface:

〈ν|Ψ〉 =
∑

µ

RνµIµ, . (5)

The spectral representation for the R-matrix follows from
Eq.(4):

Rνµ =
∑

n

〈ν|Φn〉〈Φn|µ〉
2(En − ε)

. (6)

Eqs. (4),(5) and (6) are the working equations of the R-matrix
theory. Once the R-matrix is found, the scattering boundary
conditions simultaneously generate transmittion coefficients
for all the leads and the boundary parameters Iν at the
corresponding contacts. Thus, one can compute the electric
current in the Landauer formula[5] and the wave function in
Eq.(4), i.e. the carrier density.

The basis {Φn} is generally to be computed by diagonaliz-
ing the Hamiltonian matrix Eq. (2) in terms of appropriate
primary basis. In three dimensional domain with singular
electrostatic potential solving the global spectral problem
Eq. (3) is not possible. On the other hand, the R-matrix Eq.(5)
can be defined at any surface inside the device area and it does
not depend on the basis representation. The device growth
algorithm[4] enables the R-matrix to be propagated through
the device area and eliminates the huge eigenvalue problem.
We split the device area into a set of elements where the
wave function is well represented by small primary basis sets.
Then, the Hamiltonian matrix Eq.(2) is computed separately
in each element and small independent spectral problems are
easily solved. We start with an arbitrary element and grow
the device by adding all the other elements one by one. After
adding a new element, the device boundary changes and a
part of the previous boundary is removed. Given the surface
basis {|ν〉} at the removed boundary segment, we require the
continuity of 〈ν|Ψ〉 which gives algebraic recipe for the R-
matrix propagation[4]. Computing the R-matrix at each step
only requires inversion of a boundary matrix of small size
of {|ν〉}. The R-matrix propagation also generates a set of
successive relations which express {Iν} at each boundary
segment in terms of {Iν} on the surface of the growing
device after removing this segment. Eq. (6) in the first element
gives initial conditions for the device growth. Adding the
last element completes the device and gives the R-matrix and
the boundary parameters Iν at the contacts which suffice to
compute the electric current in all the leads. In turn, successive
boundary relations generate Inu at all previously removed
internal boundary segments and give local basis representation

Fig. 1. GAA and double gate MOSFET used in the simulations.
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Fig. 2. Fragmentation scheme for a device with Coulomb singularity.

for the carrier density in each device element. Thus, using the
device growth algorithm, we avoid huge calculations and the
computation time scales linearly with the device volume [4].

III. ELECTROSTATIC POTENTIAL WITH COULOMB
SINGULARITIES

Apart from its numerical efficiency, the method offers a
natural way to study effect of random dopants by adjusting
the device fragmentation scheme. In this work, we calculate a
ballistic transport at T = 300K in the GAA and double gate
Si MOSFET (Fig. 1). in the effective mass approximation with
m∗ = 0.26, εSi = 11.9, εSiO2 = 3.8, dopant concentration in
the source/drain region of 1020 cm−3, the length in y-direction
Ly = 2, 3 nm and applied bias VSD = 0.1V. We take the
direction from source to drain as the positive x-direction. We
place a single positive charge in the gate area and compute
the drain current as a function of the gate voltage VGATE at
different positions of the donor.

The device elements are introduced by first dividing the the
semiconductor area along the x-direction and than separating
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Fig. 3. Carrier density along the current direction in the middle of the Si
channel. The donor is located in the middle of (y, z)-plane at xd=13 nm. The
green and blue curves correspond to two possible screening mechanisms in
Fig. 7.

out the spherical element centered at the donor position
(Fig. 2). Thus, there are three types of the device elements:
rectangular, rectangular with spherical hole and spherical. In
the former two, the primary basis is constructed by the SDT
method in terms of DVR Jacobi polynomials [4]. In the latter
we use spherical coordinates (ρ, θ, φ) and take as a basis the
direct product of spherical harmonics Ylm(θ, φ) and Legender
polynomials Pn(ρ). Ylm(θ, φ) are also used as the basis {|ν〉}
at the surface of spherical element. Using spherical coordinates
eliminates the Coulomb singularity and the wave function at
the donor is computed easily.

In our method, smoothness of the carrier density at the
internal boundaries between the device elements provides a
universal criterium for numerical completeness of the local
spectral expansions and the surface bases. Fig. 3 shows a
typical behaviour of the density along the current direction
in the middle of Si body. The peaks in the figure are located
exactly at the donor position.

The curve on Fig. 3 is composed from separate pieces
computed in all the device elements but the global solution is
clearly smooth, which guarantees that implemented bases are
large enough. We confirmed at least three significant digits of
accuracy by changing the radius of the spherical element from
0.25 to 0.8 nm and number of spherical harmonics from 16
(l = 3) to 36 (l = 5). Typical basis size in these calculations
is ∼ 50 − 80 for the rectangular elements and ∼ 100 for the
spherical element. From the numerical viewpoint, the existence
of the donor entails additional spherical element which only
causes ∼ 20 % increase in computer time compared to smooth
charge distribution. The Poisson equation with point charge
singularity was solved by the method of [6]

IV. SIMULATION RESULTS

In Fig. 4 we compare the I-V characteristics for the double
gate MOSFET with zero positive charge in the channel,

Fig. 4. I-V characteristics for the MOEFET on Fig. 1b. Four curves
correspond to the intrinsic channel (open squares), homogeneous positive unit
charge in the channel (open triangles), and positive ion at xd=13 nm (solid
circles) and xd=15 nm (solid triangle). Inset shows bistability of the electronic
state for xd=15 nm.

homogeneously distributed unit charge and with the positive
ion located in the middle of y, z plane at xd = 13 nm and 15
nm. In the substhreshold region, the drain current strongly
depends on the donor position which cannot be mimicked
by smooth charge distribution. The strongest effect is for the
donor in the middle of the Si body, and this tendency is
observed in our calculations for different Ly in both double
Gate and GAA MOSFETs.

We have also found two branches in the IV characteristics
which indicates an intrinsic instability of the non-equlibrium
electronic state of the device. The inset on Fig. 4 shows an
example of this bistability in double gate MOSFET with the
donor at xd = 15 nm. On Fig. 5 we present comprehensive
data for GAA MOSFET with voltage resolution ∆VGATE =
0.002V . For xd = 15 nm, two stable states are found within
voltage interval ∼ 0.05 V. When the donor is shifted in the
source direction, the bistability region increases up to ∼ 0.2
nm.

The origin of the instinsic bistabilily can be seen from
Figs. 6 and 7 which show the transmition function T(E)
and energy resolution of the screening charge in the gate
area for two electronic states in GAA with xd = 13 nm at
VGATE = 0.4 V. The blue (green) curves on these figures
correspond to the upper (lower) branch in Fig. 5. The carrier
density for these states is shown in Fig. 3. We observe the
resonant contribution to the drain current (blue curve) and
the corresponding peak in the screening charge at energies
above the bottom of the lowest conduction subband in the
source region (located at ∼ 0 eV). In this state, the ion is
mostly screened by trapped source electrons. On the contrary,
the narrow green resonance is below the threshould for the
source electrons. The ion is mostly screened by the drain
electrons which do not contribute to the drain current. The
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Fig. 5. Bistability in the IV characteristics of the GAA MOSFET on Fig.1a.
The donor is located at xd = 15 nm (red) and xd = 13 nm (black).

Fig. 6. Transmission function T(E) for two screening mechanisms in Fig. 7.

total screening charge trapped by the ion in the blue state
(”source resonance”) exceeds the one in the green state (”drain
resonance”) (see Fig. 3), which in turn causes the shift in the
resonant energy due to the feedback effect. A comprehensive
analysis of this peculiar behaviour is beyond the scope of this
paper and will be given elsewhere.
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