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Abstract—We study the effect of side contacts on plasma os-
cillations in two-dimensional (2D) electron systems by numerical
simulation. Our model is based on the kinetic electron transport
equation and the self-consistent Poisson equation. We find that
the contacts absorb the energy of plasma oscillations excited in
the 2D electron channel and consequently this effect can be
a dominant damping mechanism, surpassing the damping due
to the electron collisions. We estimate the damping rate caused
by the contacts and discuss its dependence on the real contact
injection properties and temperature.

I. INTRODUCTION

Plasma oscillations in 2D electron channels can be used
in different heterostructure electron devices operating in the
terahertz (THz) range of frequencies [1]. The excitation of the
plasma oscillations leads to the resonant response in different
structures with 2D channels. The quality factor of the plasma
resonances Q ∝ γ−1, where γ is the damping rate of the
plasma oscillations, is a very important factor determining the
performance of different THz devices. It is usually believed
that γ is determined primarily by the frequency, ν, of electron
collisions with impurities and phonons. This fact comes from
theoretical studies based on a hydrodynamic model of the elec-
tron transport in the 2D channel with ideal highly-conducting
contacts (for example, see [2]). Several other mechanisms of
the damping of plasma oscillations are known, but those are
negligible in the circumstance practically concerned: electron-
electron collision (viscosity in terms of hydrodynamics) is only
effective for high-order modes of plasma oscillations [3], and
the radiative decay is comparable to the collision frequency at
low temperatures [4], [5] but negligible at room temperature.
It has also been shown that side contacts can contribute to the
damping due to the “penetration” of plasma oscillations into
the contacts, if the conductivity of the contacts is not so large
compared with that of the 2D channel [6].

In this paper, we show that the damping of plasma os-
cillations can strongly depend not only on the conductivity
of the material of side contacts (as shown in [6]), but also
on their injection properties, i.e., on the boundary conditions
for the electron distribution function at the contacts. Our
consideration is based on computer modeling of the transient

electron processes in the 2D channel. The mathematical model
used includes the Vlasov kinetic equation coupled with the 2D
Poisson equation and the numerical method called the splitting
scheme for solving the former. We conduct the numerical
simulation based on the model, and we find that the energy
of plasma oscillation is absorbed by the contacts and that the
damping caused by this can be comparable or even larger than
that due to electron collisions with impurities and phonons.
In our best knowledge, the damping mechanism of plasma
oscillations in 2D electron systems discussed here has not been
known yet in the literature.

II. MODEL AND METHOD OF SIMULATION

Since we focus on the damping caused by side contacts,
we consider a rather simple 2D electron system shown in
Fig. 1, consisting of a heterostructure 2D electron channel with
a (remote) doping and side contacts whose vertical dimension
is much larger than the channel length and width. In the same
spirit, the collision integral in the kinetic equation for the
electron transport is omitted, i.e., we use the Vlasov equation:
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where f = f(t, x, px, py) is the electron distribution function
(y-coordinate is along the transverse direction in the channel),
ϕ = ϕ(t, x, z) is the electric potential, e = |e| is the electron
charge, px and py are the momentum in x- and y-directions,
vx = px/m is the electron velocity, and m the electron
effective mass.
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Fig. 1. Geometry of the 2D electron system under consideration.
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The potential ϕ in (1) obeys the self-consistent Poisson
equation:
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ε
δ(z), (2)

where Σd is the donor sheet concentration,

Σ(t, x) =
2

(2πh̄)2

∫ ∞
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−∞

fdpxdpy (3)

is the electron concentration, h̄ is the reduced Planck constant,
ε is the dielectric constant, and δ(z) is the Dirac delta function.
Here we assume that we have the delta doping of donors at
slightly above the 2D electron channel, and that in solving (2)
the distance between them is negligible.

We conducted simulation of transient electron processes for
the above-mentioned system based on (1) and (2). As the initial
condition, we artificially set a nonuniform perturbation to a
steady-state distribution function, and monitored the transient
electron processes. In the framework of the hydrodynamic
approach (with ideal boundary conditions), the result would
be free oscillations of the electron concentration and potential
(plasma oscillations) without damping. However, our model,
which accounts for the real injection properties of electrons
from the contacts into the channel and vice versa, results in
the decay of plasma oscillations (see below).

As boundary conditions for (1) and (2), we set the potential
at the contacts to be equal to zero,

ϕ|x=±L/2,z=0 = 0, (4)

and describe the distribution function at the contacts as fol-
lows:

f±|x=∓L/2 = f
F
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T
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Here, f+ = f(px > 0) and f− = f(px < 0), fF is
the Fermi distribution in the contacts [its explicit form is
obtained by putting ϕ0 = 0 in (6)], p

T
=

√
2mk

B
T ,

k
B

is the Boltzmann constant, T is the temperature, and
δEx = −∂(ϕ − ϕ0)/∂x is the time-dependent part (i.e.,
ac) of the electric field, where ϕ0 = ϕ0(x, z) is the dc
potential, Ec is the characteristic electric field determining
the injection properties of the contacts. According to the
boundary conditions (5), the ac electric current across the
contact surfaces is proportional to the ac electric field at these
surfaces: when the ac electric field there is directed towards
the contacts, the amount of incoming electrons increases, and
vice versa. Small values of Ec corresponds to high-resistance
Ohmic contacts. At very large Ec, the electron distribution
function at the contacts becomes fixed, i.e., time-independent.
The latter is frequently adapted for steady-state and dynamical
(see, for instance, [7])) transport simulations of semiconductor
devices which uses either the kinetic transport equation or the
Monte Carlo method.

The steady-state solution of (1) with (5), f0 is found to be

f0 =
1

1 + exp{[(p2
x + p2

y)/2m− eϕ0 − Ef ]/kB
T} , (6)
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Fig. 2. Schematic views of (a) steady-state potential and (b) steady-state
electron concentration in the channel.

where Ef is the Fermi energy in the contacts (measured from
the bottom of the conduction band in the contacts, assuming
the contacts are made of heavily doped semiconductors) and
ϕ0 should be calculated self-consistently according to (2) and
(4). The steady-state potential and electron concentration in
the channel [the latter being calculated using (3) and (6)] are
schematically illustrated in Fig 2(a) and (b). As the initial
condition of the simulation, we use the distribution function
weakly perturbed from (6):

f |t=0 = f0 + af0|x=0 cos(πx/L), (7)

where a is a parameter determining the amplitude of the
perturbation.

To solve (1) with the boundary conditions (5), we adapted
the numerical procedure called the splitting scheme [8], [9]
(we used the cubic spline method for interpolations required in
the method). The method allows to solve the Vlasov equation
with the numerical accuracy of the order of Δt2, where Δt
is the time step for the numerical simulation. For detailed
explanation of the method, see [8]. The Poisson equation
(2) was solved by the 2D finite difference method with the
boundary conditions (4) and ∂ϕ/∂z|z=±∞ = 0.

III. RESULTS AND DISCUSSION

With the boundary conditions (4) and (5) and the initial
condition (7), we solved (1)-(3) numerically using the splitting
scheme. Parameters of the system were chosen for the GaAs-
based heterostructure (ε = 12 and m = 6.1 × 10−29 g) with
Ef = 0.04 eV, L = 0.6 μm, Σd = 0.5 × 1012 cm−2, and
T = 77 or 300 K. The amplitude of the perturbation was set
to a = 0.1.

Figure 3 shows the evolution of the ac potential in the
channel (at x = 0) in the response to the initial perturbation
with different values of Ec and T . One can clearly see from
Fig. 3 that the amplitude of the potential rapidly decreases with
time, quite contrary to the theory based on the hydrodynamic
model.

To clarify the reason for this damping, let us first think about
the case where the contacts are ideally conducting, i.e., they
act as reservoirs of electrons [Ec →∞ in (5)]. They provide
the constant amount of thermal electrons to the channel, but
at the same time electrons in the channel is absorbed by them.
At the beginning of the perturbation, electrons in the channel
oscillate in time and space due to the self-consistent ac electric
field. As time goes, a part of the electrons contributing to the
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Fig. 3. Potential at x = 0 vs elapsed time for systems with different
temperatures and different characteristic electric field Ec.

plasma oscillation go out of the channel and never come back
since there is no deviation of the amount of the incoming
electrons. Then, the total energy of the plasma oscillation
keeps decreasing, and finally it is damped out. The finite
value of Ec means there is some feedback from the contacts.
The damping of plasma oscillations becomes less effective for
smaller value of Ec, as shown in Fig. 3.

To study quantitatively how effective the damping due to
the contacts is, we evaluate the damping rate γ as follows:

γ =
1

N − 1
N∑
n=2

log(ϕ|x=0,t=tn−1/ϕ|x=0,t=tn)
tn − tn−1

, (8)

where the potential at x = 0 has maxima at t = tn,
n = 1, 2, · · · . In (8), we calculate the rate of decrease in
heights of adjacent maxima, add it up for first N maxima, and
take the average. If the time-dependent part of the oscillations
is in the form e−γt cos(ωt), then the expression (8) reproduces
γ exactly. Figure 4 shows γ as a function of Ec with different
temperature. It is seen from Fig. 4 that the damping rate
decreases when Ec decreases, as we mentioned above, and
that the damping rate is larger at higher temperature (also
graphically seen in Fig. 3). The latter fact can be explained
as follows. Figure 5 illustrates the perturbed distribution func-
tions (integrated over py) at the right contact, (f − f0)x=L/2,
at t = 0.2 ps with different temperatures. The distributions for
px > 0 correspond to electrons moving towards the contact
[those for px < 0 correspond to the incoming electrons, which
slightly deviates from zero due to the second term in (5)]. As
seen in Fig. 5, the perturbed distribution function at the higher
temperature has the wider thermal broadening and, hence, the
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Fig. 5. Perturbed distribution functions at the right contacts, (f−f0)x=L/2,
at t = 0.2 ps with Ec = 100 kV/cm and different temperatures. The inset
shows the evolution of the energy flow at x = L/2.

faster average electron velocity, yet having almost the same
amount of electrons. Since electrons move towards the contacts
faster, the damping at higher temperature is stronger. The inset
in Fig. 5, which shows the energy flow at the right contact,∫∞
−∞

∫∞
−∞ vx[(p2

x+p2
y)/2m]fdpxdpy , gives a clearer evidence

of this.

Although (8) is a rough estimate of the damping caused
by the contacts, let us compare it with the damping rate
for electron collisions, ν/2. The collision frequency ν for
heterostructure systems depends strongly on the temperature,
and it is inversely proportional to the mobility μ. Assuming
that μ = 9000 and 105 cm2/Vs at T = 300 and 77
K, respectively, for the GaAs heterostructure, we estimate
ν/2 ∼ 1012 and 1011 s−1 at each temperature (from the
formula ν = e/μm). From these estimations and values of γ
shown in Fig. 4, we find that at T = 77 K the damping caused
by the contacts surpass significantly that caused by electron
collisions (several times larger), and that even at T = 300 K
the former mechanism is comparable to the latter.
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IV. CONCLUSION

In conclusion, we have studied the damping mechanism of
plasma oscillations in 2D electron systems with side contacts.
We have carried out the computer simulation of the transient
electron processes in the 2D electron channel using the Vlasov
kinetic equation coupled with 2D Poisson equation. We have
found that the contacts absorb the energy of plasma oscilla-
tions in the channel, resulting in their damping. It has been
shown that the damping rate estimated can surpass that of the
electron collisions.
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Grant-in-Aid for the JSPS Fellows and by the Grant-in-Aid
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