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Abstract—We report unusually strong temperature dependence 
of graphene electron mobility, obtained using full-band Monte 
Carlo (MC) simulations and experiment. The electron-phonon 
scattering limited intrinsic graphene electron mobility changes by 
as much as the fourth power of temperature, Tn ( 2 n 4< < ), in 
the 200 K to 350 K range. This is in contradiction with the 
generally observed approximately linear T dependence around 
room temperature. This linear dependence arises due to the 
phonon equipartition approximation that gives rise to a linear 
temperature versus scattering rate relation. The highly nonlinear 
temperature dependence is reminiscent of transport in the Bloch-
Gruneisen temperature range, where phonon energies assisting 
emissions and absorptions are less than or comparable to thermal 
energies. In addition, graphene has a conic dispersion relation 
around its K points or conduction band minima, setting it apart 
from other materials with parabolic energy-momentum curves 
around their conduction band minima, and consequently well-
defined effective masses. 

Keywords-graphene mobility; temperature dependence; Bloch-
Gruneisen temperature dependence; graphene mobility temperature 
dependence. 

I.  INTRODUCTION 
Graphene has recently created an excitement among 

researchers due its very high measured and calculated low-field 
mobility values [1-5], approaching 1-2×105 cm2/Vs. This 
mobility limit is significantly larger, as much as hundred times 
compared to the silicon’s, than the room temperature low-field 
mobilities associated with semiconductor materials. In addition 
to having very high intrinsic low-field mobilities, it exhibits an 
unconventional quantum Hall effect and a minimum 
conductivity [1-4]. Also, its electrons at or near conduction 
band minima do not have well-defined effective masses due to 
the conic shape of its dispersion curve in the vicinity of these 
points, as shown in Fig. 1. This may cause them act as Dirac 
fermions with kinetic energies mov2 where mo is the free 
electron mass and v is the graphene electron Fermi velocity, 
which is one three-hundredth of the speed of light. 

Graphene is a two-dimensional single planar layer of 
graphite sheet, and is the building block of one-dimensional 
carbon nanotubes and nanoribbons, and zero-dimensional 
fullerenes. As the mechanical exfoliation method or the so-
called “Scotch-tape method” has recently enabled quick and 
less strenuous preparation of graphene, a rise in the number of 
measurements and theoretical work to obtain its electrical 

characterization has followed. However, the earlier 
experimental analyses have proven it to be hard to extract 
graphene properties, as being a very thin layer, graphene has 
interacted strongly with its environment via remote scatterers. 
Also, local impurities on graphene samples have overwhelmed 
measurements as acting near scatterers [6]. However, these are 
extrinsic factors, and are not representative of the material 
limits, restricting the measured mobility values. As time has 
progressed, graphene preparation techniques have improved, 
causing measured graphene mobility to approach its intrinsic 
limits [1-5], which are dictated by the electron-lattice 
interactions. Here we develop Monte Carlo type methodologies 
to predict these intrinsically limited graphene mobility values, 
and their temperature dependence between 200 K and roughly 
the room temperature. 

In this work, we semi-classically calculate transport 
properties of graphene electrons. Therefore here they are not 
relativistically described using the Dirac equation. Further, we 
consider the interaction of electrons with in-plane longitudinal 
and transverse, and out-of-plane transverse acoustic and optical 
one-phonon processes. Equilibrium statistics or adiabatic 

 
 

Figure 1. Energy dispersion curve of graphene with an hexagon shaped 
unit cell shown above. Conduction band touches the valence band at the 
six K points as shown above, making graphene a semi-metal. 
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conditions are employed for phonons. Moreover, graphene is 
assumed to be infinite in extent, and without impurities and 
conformal deformities. To obtain temperature dependent 
graphene electron mobility under these conditions, we then 
employ Monte Carlo techniques using full band electronic and 
phononic graphene dispersion curves. Our calculations indicate 
that around room temperature graphene exhibits strong 
temperature dependence. Next, we describe the numerical 
models we use for the electron-phonon interactions along with 
theoretical predictions. This is followed by our calculated 
temperature dependency of graphene electron mobility and 
resistivity results. 

II. ELECTRON SCATTERING RATE 

A. Electron and Phonon Dispersion Curves 
To model electron transport in graphene using Monte Carlo 

simulations, we need the electronic and phononic dispersion 
relations for graphene. By applying the tight-binding method to 
the four nearest distant neighbors, we obtain the band 
structures of electrons and phonons. This gives the following 
analytical energy-momentum relation, which is plotted in Fig. 
1, for the graphene electrons.  
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Above, kx and ky are momenta that correspond to electron 
movements that are perpendicular to each other, and at the 
same time are, respectively, parallel or vertical to any two 
carbon-carbon bonds of the graphene’s unit cell in space. 
Further, a (= 2.46 Å) is the graphene’s lattice constant, which 
is the second nearest distance between the carbons in its unit 
cell. (The first is the carbon-carbon bond length, which is 
approximately 1.42 Å.) 

Fig. 1 indicates that we have conduction band minima at 
the six K points of the Brillouin zone. Therefore, energy-
dispersion relations in the vicinity of these points determine the 
low-field transport and hence mobility. If we write the 
momentum with respect to a K point or as the distance from 
that point, then a linear energy-momentum relation that 
represents a cone can be used to approximate (1), as shown 
below. Here the proportionality constant is Planck’s constant 
multiplied by the graphene electron Fermi velocity, which is 
one three-hundredth of the speed of light. 

                             ( ) FE k v k=                                        (2) 

For the phononic bands of graphene, four-nearest distant 
tight-binding method does not provide an analytical expression 
like it does for electrons, mainly due to the use of different 
force constants in various directions. For a discretized 
momentum point, we calculate the six energy eigenvalues (two 
in-plane and out-of-plane modes for acoustic and optical 
phonons), corresponding to the three degrees of freedom in 
space, of the dynamical matrix for lattice vibrations, as 
described in [5]. This provides energy-momentum relations for 
the three acoustic and optical phonon branches, which we save 

in a look-up table for later use in our Monte Carlo calculations. 
For example, our calculated acoustic phonon branches are 
plotted in Fig. 2 using these tables. Here the resolution is 
approximately 150 points in each momentum direction.   

The acoustic branches in the vicinity of Γ points have linear 
energy-momentum relations like electron dispersion curves 
near K points. These acoustic phonons give rise to low energy 
intravalley scatterings, and are important for low-field 
transport. Below, we show their dispersion relation (for in-
plane modes) as a function of phonon momentum q, which is 
with respect to the Γ point. It incorporates a proportionality 
constant that includes the speed of sound in graphene, which is 
roughly one-hundredth of the graphene electron Fermi velocity. 

                             ( )p sE q v q=                                        (3) 

B. Electron-Phonon Scattering Rates 
To obtain phonon limited graphene mobility, we first 

determine graphene scattering rates, as shown in the following, 
using Fermi’s golden rule and the deformation potential 
approximation. Below, as the energy conservation terms that 

 
 

Figure 2. Acoustic phonon branches of graphene calculated using the four 
nearest neighbor tight-binding method.  Ep1 corresponds to the out-of-
plane mode while others are for the in-plane modes. 
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are represented by the Dirac-delta functions imply, the first and 
second terms of the sum account for phonon absorption and 
emission, respectively. H is the overlap integral for phonon 
absorption or emission, indicated by a superscript. Further, 
final or initial momentum k = (kx ,ky) includes the effects of 
both momentum directions. 
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To obtain overlap integrals in (4) and thus the scattering 
rate as a function of energy, momentum and other known 
parameters, we start with the scattering rate formula of lower 
dimensional carbon nanotubes [7], and change it to a form 
suitable for the two-dimensional graphene [5]. We then take 
the integral of (4) within the unit cell in the Brillouin zone to 
calculate the total scattering rate for an electron with a specific 
energy and momentum. The resulting total scattering rate, Γ , 
for a graphene electron with initial momentum ki and energy 
E(ki) to all possible final momenta kf and energies E(kf) such 
that f i p f i(k ) (k ) (k -k ) 0E E E− ± = , is written below. Here, 
the electronic and phononic dispersion curves [5] are calculated 
using the four nearest neighbor tight-binding method, as 
aforementioned.  
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  Above, D (=16eV) is the graphene deformation potential, 
ρ  is the graphene surface density, Q is a wavevector, Ep(k) is 
the phononic energy at k, Np(Ep(k)) is the Bose-Einstein factor 
for calculating the phonon occupation number, and other 
parameters have their usual meanings. Additionally, the 
integral is taken over the entire Brillouin zone, 

where ( )1
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π+ ≤  [5], and the lattice constant a = 2.46Å.                                                              

C. Theoretical Electron-Phonon Scattering Rate 
Temperature Dependence 
To theoretically calculate the phonon-limited scattering rate 

in (5), we make use of the following assumptions (the first two 
are generally valid around room temperature for most 
materials):  

- Low-energy acoustic phonons determine the low-field 
electron mobility. 

- Phonon energies that are exchanged during emission and 
absorption are lower than the thermal energy at room 
temperature, giving rise to the equipartition approximation. 
This gives the following phonon occupation number as a 
function of phonon and thermal energies.  

                                 ( ) th
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- For low phononic energies, phonon dispersion relation can 
be expressed, as mentioned before for in-plane modes, using a 
linear energy-momentum relation: p sE q v= , where sv ( ≈ 106 
cm/s) is the sound velocity in graphene and q is the phonon 
momentum relative to the nearest Γ point. 

- Likewise, for low energies, electron dispersion relation 
is FE k v=  where k is the momentum relative to the nearest K 

point, Fv  ( ≈ 108 cm/s) is the Fermi velocity. Therefore, the   

density of states is
2

F

E
v
π

(= 2
dk

k
dE

π ). 

Substituting these in (5) and taking Q2 as |q|2 for acoustic 
phonons result in the following linear temperature dependency 
(due to thermal energy Eth) for the scattering rate. 
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In the Bloch-Gruneisen transport regime, which is generally 
at lower temperatures, the above linear relation breaks down, 
and the scattering rate becomes a strong function of 
temperature, where nTΓ ≈ and 3 6n< < .This happens when 
the phononic energies involved in scatterings are comparable to 
thermal energies ( thsq v E≥ ; if q is twice the Fermi 
wavevector for intrinsic graphene then 50K T≥  [9]). Further, 
due to the conic electronic dispersion curves, electron energies 
quickly increase due to an applied field. This may necessitate 
scattering phonons with energies comparable to thermal 
energies, and thus may give rise to a high temperature 
dependency. Also, electron scatterings with phonons on 
graphene samples with conformal deformities might give rise 
to higher temperature dependencies. Additionally the out-of-
plane mode in Fig. 2 has a non-linear energy-momentum 
relation that may result in a strong temperature dependency [8].  

III. MONTE CARLO CALCULATIONS OF TEMPERATURE 
DEPENDENCE OF MOBILITY /RESSISTIVITY  

To investigate electron-phonon interactions and electron 
transport in graphene, we develop a Monte Carlo (MC) 
simulator that resolves electron transport in conjunction with a 
semiclassical electron-field interaction, and the phonon-limited 
scattering rates [5]. This is achieved first by using a high 
resolution Riemann sum for evaluating the integral in (5) for a 
given electron energy and momentum. The result of the 
integral is then used to calculate the total scattering rate (for 
choosing a correlated drift time or scattering probability) and 
final likely-to-scatter energy-momentum neighborhoods. In 
case of a scattering, the final electronic energy and momentum 
are probabilistically obtained using a Monte Carlo integration 
technique, while conserving total energy and momentum [5].  
Specifically, during the Riemann sum, scattering probabilities 
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to different neighborhoods corresponding to the grids 
employed for discretization are stored. Then an energy-
momentum neighborhood that the electron is likely to scatter is 
determined stochastically. Since the momentum resolution of 
this neighborhood is not high enough to resolve low energy 
transport, and we do not want to be restricted by these 
discretized values for electron energy and momentum, a Monte 
Carlo integration technique is employed within this 
neighborhood to obtain a highly probable energy-momentum 
point to scatter. Further, in case of no electron-phonon 
interaction, a total scattering rate correlated drift time is 
employed for calculating a new momentum and energy for the 
electron.  

Fig. 3 shows our calculated graphene mobility and 
resistivity values as a function of temperature for three 
different field directions along with recently measured 

temperature dependent graphene resistivity data. In 
simulations, external fields are applied in directions that give 
rise to electron accelerations parallel to ky, kx=ky and kx 
momentum directions. To calculate resistivity, we use 
( ) 1

oen μ − where e is the electronic charge, no is the intrinsic 
graphene concentration taken as 2×1012 cm-2, and μ is our 
calculated temperature- and field direction-dependent graphene 
mobility. Fig 3 indicates that phonon-limited low-field intrinsic 
graphene mobility is very sensitive to temperature changes, Tn 

where 2 4n< <  [4,5,8,10]. We associate this with high energy 
(relative to thermal energy) phonons that assist electron 
scatterings, their phonon occupation numbers, the conic shape 
of the electronic and in-plane phononic dispersion curves, and 
the non-linear band structure of the out-of-plane phononic 
branch. In addition, field-direction dependency of graphene 
mobility is related to the slightly different dispersion curves 
electrons see in the direction they move.  

IV. CONCLUSION 
In conclusion, we investigated temperature-dependent 

graphene electron mobility, and compared our findings to 
recently published data. They both indicate that temperature-
dependent mobility changes, which are related to the electronic 
and phononic dispersion curves, are unusually high for intrinsic 
or low doped graphene samples. This may be attributed to the 
conic band structures, and electron interactions with in- and 
out-of-plane phonons that have energies comparable to the 
thermal energy. 
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Figure 3. Temperature- and field direction- dependent mobility (top) , and 
resistivity (bottom) of intrinsic graphene with an intrinsic carrier 
concentration of 2×1012 cm-2. (Field is applied along the graphene ky 
direction ○, kx=ky direction  , and kx direction ◊.) We also show 
experimentally measured temperature-dependent part of graphene 
resistivity data extracted from the recently published [4] (corresponds to 
the resistivity of graphene samples with low carrier concentrations — 
measured at graphene devices’ neutrality points) along with error bars in 
the aforementioned measurements. Experimentally measured resistivity 
values change as much as the fifth power of temperature. Further, 
mobility and resistivity curves share the same temperature axis. 
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