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By using the linear combination of atomic orbitals (LeAO), we
can achieve the bandstructure by solving the generalized
eigenvalue problem [12]

where KEHr2.8 for carbon, and E i and Ej are the on-site
energies and element of the overlapping matrix Sij is calculated
by the following integration with techniques discussed [9]

where fIJi and rpj are basis functions in STO form for atoms.
Thus the impact of bond length variation will be included in
the overlapping matrix, which further results in the
corresponding changes in Hamiltonian.

(2)

(1)

TABLE!. PARAMETERS FOR CARBON IN EXTENDED HOCKEL THEORY

Orbital Eonsite Cj C2 ~l ~2

2s -20.316 0.741 2.037

2p -13.670 0.640 0.412 1.777 3.249

efficient ab initio, the density-function-theory (DFT) is still
computationally prohibitive in applying to systems with more
than 200 atoms. Alternatively, the semi-empirical extend
Huckel theory (EHT) provides a good tradeoff in between
accuracy and efficiency [6]. By taking an explicit form of
atomic orbitals, EHT can also provide more freedom than tight­
binding (TB) to deal with bandstructure changes induced by
bond relaxation, making it appealing for novel material
modeling. Unlike TB, EHT provides the capability of
simulating different types of atoms within the similar sets of
parameters [7][8]. The overlapping matrix used in EHT can be
calculted in advance with little effort by a variety of integration
techniques [9], and the method offers more insight into the
physical property of the device performance.

Within the EHT, the Slater type orbitals (STOs), a non­
orthogonal atomic orbital basis set, are chosen for each atom,
whose explicit form can be found in [9]. A parameterized
double ~ wavefunction [1 0] (TABLE I. [11]) is adopted to
calculate the overlapping matrix and the Hamiltonian. The
matrix elements of the Hamiltonian are evaluated as

I. INTRODUCTION

Graphene nanoribbon MOSFET (GNR-FET) is a promising
device structure for CMOS-plus era because of the ultimately­
thin channel thickness (mono-atomic layer) and high hole and
electron mobilities [1][2]. However, it has become apparent
recently that the gate controllability of GNR-FETs is very
sensitive to the ribbon (i.e., channel) width and orientation [3]
because the property of GNR can vary from metallic to
semiconductive. By contrast, the experimental results show
that narrow GNRs (2nm±0.5nm), rather than the wide ones,
still preserve a proper bandgap for MOSFET [4] as predicted
for the armchair-edged GNR due to the edge bond relaxation
[5]. In this paper, we compare both the bandgap yielded by the
extended Huckel theory (EHT) and tight-binding (TB) methods
due to the edge bond relaxation [5]. The ballistic non­
equilibrium Green's function (NEGF) quantum transport
computation is conducted based on both methods to study the
performance of armchair-edged GNR-FETs (aGNR-FET) (See
Fig. 1). The simulation is implemented self-consistently with
3D Poisson's equation. The computation efficiency of both
methods is comparable, while EHT is capable of modeling
impacts of ribbon-edge termination and structural relaxation in
a more direct physical way. The merits of EHT allow us to
look into the influence of bond relaxation on the transport
characteristics of aGNR-FET which leads to significant
variations in 1-V performance.
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Abstract-A comparative study of graphene nanoribbon
MOSFET (GNR-FET) using the extended Huckel theory (EHT)
and tight-binding (TB) is conducted within the frame of the self­
consistent ballistic non-equilibrium Green's function (NEGF)
formalism. The bandgap variation in armchair-edged GNR
(aGNR) induced by the length of the edge bond, as well as the
transport characteristics with bond length relaxation, is studied
in this paper. A strong structural dependence of aGNR-FET
performance on the bond length is also observed and discussed.

II. SIMULATION SCHEME

A. The Extended Huckel Theory

Accurate calculation of electronic structure and atomistic­
level simulation of device performance, including a large
number of atoms still represent a major challenge in the device
modeling and simulation, mainly due to their high
computational demand. Despite of recent progress of highly

978-1-4244-1753-7/08/$25.00 ©2008 IEEE P-11-1 165



H{k)VJ{k)=E{k)S{k)VJ{k) (3)

where the Hamiltonian and overlapping matrix are expressed in
the form of the Bloch sum of orbital basis, which indicates

H .. (k) =~ eikRjj'H.. ,
ij ~ ij

matrix S in principle, we use U directly since S is close to the
identity matrix 1. To improve the computational efficiency, an
iterative inversion method is adopted [15], in addition to the
contour integration in energy space of numerical quadrature
[16]. The current is calculated through the Landauer-Buttiker
formalism [14], which expresses the current by integrating
transmission weighed by the Fermi-Dirac distribution.

(4)

Here subscript j' runs over all the orbitals equivalent to the
orbital j, and Rjj ·denotes the vector pointing from j to j '.

IDS = ~ fT(E)(fs - fD)dE

= ~ fTr(rsGTD(Grr)(fs- fD)dE

(6)

B. Transport Modeling and Simulation

Based on both EHT and TB model, an aGNR-FET (Fig. 1)
is simulated using ballistic NEGF in our transport simulation,
which treats the system with open boundary conditions by the
surface green functions gs,d of the source and drain regions,
calculated through a highly convergent iteration scheme [13].
The retarded Green's function in the device region is calculated
[14] by

Gr
= [(E +iz+)8 - H -U -~s -~Drl

(5)

where T(E) denotes the transmission, r S.D=i(1:s,D-1:t S,D) and Is,
fD denote the Fermi-Dirac distribution in the source and drain
end.

Since substitution of atoms on the ribbon edges [17] will
lead to the doping effect ofGNR ,we simply neglect the doping
details and assume that both source and drain extensions of the
GNR are in thermal equilibrium with metal contacts, and thus
having the fixed (i.e., applied) Fermi levels. This simplification
assumes the fast momentum relaxation in source/drain region,
which is required by a good contact to minimize the voltage
drop inside the drain/source area.
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Fig. 2 The bandgap ~a vs. ribbon width W a with the number of atoms Na

(defined in Fig. I) as parameter. TB and EHT results share a common trend

in the bandgap, but differ slightly in value. See [5] for the TB parameter. ace

equals 1.424,1.422 and 1.423A, respectively for Na = 3p, 3p+1, and 3p+2,

with p the positive integer.

Our result (Fig. 2) is similar to that from the TB and first­
principle calculations. The figure shows the result yielded by
using EHT and calibrated TB parameters proposed in [5].

III. RESULTS AND DISCUSSIONS

We have investigated how the width of the armchair GNR
and edge bond relaxation affect the bandgap in electronic
structure. In our calculations, bond length is weakly dependent
upon Na (See Fig. I for definition), and the C-C bonds along the
channel at two edges of the ribbon are shortened by
approximately 3.4% [5].

(b)

Fig. 1 (a) The armchair GNR structure. We choose Na = 7 and Ma = 29 GNR as

the simulated region. (b) The DG structure of the simulated device. The Fermi

level is set to -12.3 eV at drain and source while the one of intrinsic GNR is ­

13.0 eV.[IO] The effective oxide thickness is set to 0.5 nm.

where S is the overlapping matrix, H for the Hamiltonian of
GNR in the simulated region, U for the potential energy, and
1:s and 1:D are the self-energy matrices for the source and drain
regions. The potential energy is calculated by the 3D Poisson's
equation with floating boundary condition of two contacts in a
hexagonal mesh. The gate voltage is included through the fixed
boundary condition on both the top and back gates. The results
are derived by solving Poisson's equation and NEGF
iteratively until self-consistency is achieved. Though the
potential energy U should be modified by the overlapping

12 Mar29

. f-
Wa

!-

166 P-11-2



However, EHT does not need fitting parameters while TB
does[8], especially for systems whose physical properties are
strongly affected by the geometry, while the computational
cost is acceptable. The result of either methods shows the same
trends that the bandgaps diminish when the widths of the
graphene ribbon grow, thus making the wide GNR-FET lack of
gate controllability[4]

2
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Fig. 4 The simulated IDS-VDS curves plotted with different marks regarding

different Vtop with Vbot=OV. TB results are shown by the dashed lines, EHT

results with acc=1.42 A by the solid lines and acc=1.44 A by the dotted lines.

1.5

the case of acc=I.44A compared to the result of acc=I.42A ,
which is similar to that of TB. Moreover, the case of
acc=1.42A exhibits a larger subthreshold slope than the one of
acc=I.44A
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Fig. 3 The bandgap ~a variation with the length of edge bonds at different Na

of armchair GNR. Note that the relaxed bond length due to the hydrogen

passivation corresponds to t5a
edge

/ ace ~ -0.034. [5]
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Fig. 5 The drain current versus gate voltage under different bias voltages

derived by different methods. The TB results are shown in solid line and

dashed line. The EHT results are plotted under different marks. An large

subthreshold current is observed in EHT result when acc=1.44 Awhile the TB

curve maintain similar to the one of acc=1.42 A, which exhibits a larger

subthreshold slope.

The difference among three cases based on EHT and TB
methods can be explained by the transmission shown in Fig. 6,
as the current can be derived from the integration of the
transmission weighed by Fermi-Dirac distribution. It exhibits
the transmissions of the GNR channel in three cases under a
bias of VDs=O.5V with Vrop=O.6Vand Vbot=OV. Since multiplied
by (lS-/D) in the integral, the transmission between the Fermi
levels of the drain and source (EFS and EFD) has the most
contribution to the current, which is downward shifted

Fig. 3 shows how bandgaps at different Na vary with the
bond length at edges, which may result from the passivation of
edged carbon atoms. In sharp contrast to wide GNRs, the
results show that all of the three types of narrow aGNRs can
become semiconductive under the edge bond length
perturbation, which indicates the sensitivity to gate voltage.

Since the electronic structure of armchair GNR has a
quantized width-dependence [3] (which is weakened by the
edge bond relaxation), GNR with Na=3p+ I (where p is a
positive integer) will provide good performance. We choose
the Na=7 and Ma=29 aGNR structure shown in Fig.1 as the
simulated region, whose left and right sides· are regarded as
source/drain areas with fixed Fermi level due to the doping
effect.

A comparison of transport characteristics simulated using
the EHT-based and TB-based NEGF is shown in Figs. 4-5.
Bond length relaxation of GNR is taken into account in the
EHT calculation, which has a significant influence on the
transport. Fig. 4 shows the output characteristics simulated
under different top gate voltage ~op with Vbot=OV. A stronger
short-channel effect in EHT simulation is observed, compared
to TB, as well as an exceedingly high drain current in the
saturation region with acr1.44A, while the drain current of
acr1.42A remains almost the same as the one yielded through
TH. From Figs.4, it is not hard to infer that GNR-FET will
show a larger ION current under a tensile stress.

Fig. 5 plots the drain current IDS under the symmetry gate
voltage operation (Vrop=Vbot) for all the EHT and TB results. A
much larger subthreshold current appears in EHT simulation in
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relatively in the case of acr1.44A, illustrating the reason for
high ION current and low subthreshold slope. The downward
shift can be interpreted by the presumption that the increase of
bond length reduces the coupling of the orbitals (i.e.
overlapping matrix elements), thus narrowing the bandgap,
which eventually shifts the transmission in the case of
acr1.44A. EHT-based simulation, standing on more basic
physics than TB-based one, has the capability to reflect the

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Transmission

Fig. 6 The transmission given by TB and EHT of the two bond lengths under

VDs=0.5V, V,op=0.6V, Vbol=OV (translated to the same EFS)' The curves of three

cases are plotted in different type of lines. EFS and EFD, marked with upper

and lower triangles, are the Fermi levels of source and drain ends.

Transmission of EHT with acc==1.44A (plotted in dotted line) is relatively

downward shifted, leaving a larger integration within the interval between EFS

and EFD than the one of other two cases.

performance variation due to the bond length relaxation. The
performance of GNR devices under structural deformation can
also be inferred from the results. The stress, which leads to a
uniform tensile strain on the lattice, may probably contribute to
a large ION current, but also to a significant subthreshold
leakage current. On the other hand, a uniform compressive
strain may improve the subthreshold slope and thus lower the
subthreshold leakage, but in return, it may reduce ION current.

IV. CONCLUSION

Band structure variations derived by EHT and TB
calculation due to the edged bond relaxation have been
compared. EHT results of bandgap variation show that all
armchair GNRs can reach the bandgap with a proper ribbon­
edged bond length to achieve good gate controllability. A self­
consistent EHT-based atomic-level NEGF simulation of an
armchair DG GNR-FET coupled with 3D Poisson's equation is
performed and compared with TB-based result. The transport
characteristics of the devices illustrate a considerable
sensitivity to structural variation. The EHT simulation offers a
good insight into the transport of the annchair GNR-FETs
under structural deformation and predicts the probable effect
on I-V characteristics due to a uniform strain.
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