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Abstract—A parallel 3D Monte Carlo (MC) simulator designed
to work on unstructured tetrahedral elements has been developed
for the simulations of nano-MOSFETs. The 3D MC code is tested
by the simulating a 10 nm gate length double gate (DG) MOSFET
with a body thickness of 6.1 nm. We investigate in this device
architecture the magnitude of the self-force arising because of
the use of tetrahedral elements for the device mesh. Finally,
the quantum corrections using density gradient approach are
described and applied to a simulation of a 40 nm gate length
TriGate MOSFET with a HfO2 gate stack.

I. INTRODUCTION

Various novel thin-body architectures have been proposed
to tackle the degradation in performance observed in the con-
ventional, bulk 32 nm technology and beyond. The thin-body
transistors may be able to satisfy the requirements imposed by
ITRS and continue the scaling. Accurate physical modelling
of the carrier transport as well as a correct description of
complex 3D geometry of these architectures is needed in
order to predict their behaviour and optimise their design.
Such physical modelling in nanoscale devices can be achieved
via the ensemble Monte Carlo (MC) method. However, this
technique is computationally very expensive for the complex
3D geometries as shown in the example of Fig. 1 [1],
[2]. Therefore, the use of an optimal 3D mesh and parallel
computing in order to save simulation time is imperative
[3], [4] because the Poisson equation has to be solved on
the device mesh at every in self-consistent simulations. Each
iteration time step in self-consistent simulations depends on
the geometry and doping of the device and it can be as small
as 0.05 fs [5], leading to tens of thousands of iterations per
bias point. Consequently, the need for a frequent solution of
Poisson equation is the main bottleneck. Therefore, there is a
need for MC device simulator which uses an optimal mesh and
can discretise the simulation domains using non-rectangular
meshes [6].
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Fig. 1. Artistic view of TriGate MOSFET architecture with a) square corners
and b) rounded corners.

In this work, we report on the development of a parallel
3D finite element simulator based on tetrahedral elements [7]
and combined with an ensemble MC for bulk Si (Fig. 2).
The parallelisation of the finite element solver is based on
a domain decomposition strategy which has proved to be
very efficient [8] (see Fig. 3), whereas a random distribution
of particles among processors is used to parallelise the MC
module. Firstly, we test the simulator on a double gate (DG)
MOSFET architecture investigating the magnitude of the self-
forces. After this test, we describe the simulation of a 40 nm
gate length TriGate MOSFET, focusing on the implementation
of the quantum corrections using the density gradient formal-
ism [9].

II. SIMULATION TEST: DOUBLE GATE MOSFET

The impact of the self-forces when we use tetrahedral
elements is investigated by simulating a 10 nm gate length
MOSFET with a body thickness of 6.1 nm and a source/drain
doping of 1 × 1020 cm−3. A distribution of the electric field
on a particle alone in the device is illustrated in Fig. 4. We
can see that the magnitude of electric field is relatively small
near the centre. Furthermore, this electric field was close to
zero if the boundaries were sufficiently far from the element
enclosing the particle. This study also included the impact of
different charge assignments on the ID-VG characteristics of
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Fig. 2. Average electron velocity vs. applied electric field for bulk Si crystal-
lographic indirections 〈100〉 and 〈111〉 compared with indicated experimental
data. The inset shows the same data on a linear scale.
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Fig. 3. Parallel efficiency (circles) and speed-up (crosses) of the 3D finite
element MC simulator. The ideal values of linear scaling are also shown for
comparison (dashed lines).

the device as shown in Fig. 5. The charge assignment scheme
using an average of the neighbouring inverse volumes (SC
MC-3) have been selected as minimising the self-force [10].

III. SIMULATION OF A 40 NM GATE LENGTH TRI-GATE

MOSFET

After testing the simulator we perform simulations on a Tri-
Gate MOSFET architecture, described details elsewhere [1],
with a FIN height of 27 nm and width of 23 nm. We have intro-
duced rounded top and bottom corners to avoid high peaks in
the electric fields and double threshold voltage [12], [13]. The
top and bottom corner radii are 4 and 2 nm, respectively. The
gate dielectric stack is composed by a 2 nm thick HfO2 layer.
The channel doping of the device is 1.0×1017 cm−3, whereas
the source and drain doping levels are 1.0×1020 cm−3. The
mesh for this structure is shown in Fig. 6, partitioned in eight
subdomains using METIS [14] to perform a parallel execution
of the code.

Fig. 4. Isosurfaces of the module of the electric field acting upon a particle
positioned inside the device.
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Fig. 5. ID-VG characteristics at VD = 0.05 V of the 10 nm gate length,
6.1 nm thick body DG MOSFET obtained from different simulation ap-
proaches: a drift-diffusion (Medici [11]), a non self-consistent MC simulation
(FF MC) and self-consistent MC simulations with three charge assignment
schemes (SC MC-1,2,3).

The quantum corrections are introduced through a quantum
potential VQ obtained using the density gradient model [15]
by solving the following equation:

2bn
∇2 exp(u)

exp(u)
= 2u − V + Vn, (1)

where bn = h̄2

12m∗q and the new variable u = 1
2 (V −Vn +VQ)

has been introduced. A finite element discretisation is then
applied resulting in the following system of equations:∫

∂Ω

2bnθi∇(u)�ndS −
∫

Ω

2bn

(∇(θi) − θi∇(u)
)∇(u)dΩ =
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Fig. 6. Mesh of the simulated TriGate MOSFET with a FIN height of 27 nm,
a width of 23 nm, a top corner radius of 4 nm and a gate dielectric stack
composed by a 2 nm thick HfO2 layer.

∫
Ω

(2u − V + Vn)θidΩ, (2)

where θi are the finite element basis functions.
The use of the discretisation based on potentials instead of

the standard based on carrier densities,

VQ = 2b
∇2

√
n√

n
, (3)

allows a much smoother behaviour of electron density espe-
cially when it is used self-consistently [16], [17]. However,
initially, we have only implemented it under a “frozen field”
approximation, i.e., we calculate the correction only once
from the solution of the drift-diffusion model used for the
initialisation of the particles. Then, during the Monte Carlo
simulation, we calculate the electric field used to move the
carriers as

E = −∇(V + V FF
Q ).

Figs. 7 and 8 show the quantum correction potential
(VD=0.05 V and VG=1.1 V) in two cross sections of the
device, the first one in the x = 0 plane and the second
one in the y = 0 plane. Figures show that there will be a
strong repulsion of the electrons from the interface coming
from the quantum correction. It is interesting to note that this
displacement of the peak charge density from the interface
also brings numerical advantages, since collision detections
with the interface are greatly diminished. This is especially
important for the non-cartesian domains we are using, since
in this case they require a high number of operations.

Fig. 9 shows the average electron concentration in a cross
section of the device from the source end to the drain end after
a simulation of 4 ps (VD=0.05 V and VG=1.1 V). We can see
the repulsion from the Si/HfO2 interface along the device. We

Fig. 7. Quantum potential in the cross-section of the device perpendicular
to the source-drain direction in the middle of the gate (x = 0 plane).

Fig. 8. Quantum potential in the cross-section of the device parallel to the
source-drain direction in the middle of the device (y = 0 plane).

also see the inversion in the three gated sides of the device,
with a small penetration to the bottom, non-gated interface.
Fig. 10 shows the average electron velocity in the x-direction
along the device, from the source to the drain. We see that the
peak mean velocity, near 1.9×106 cm·s−1, is reached at the
drain end of the channel.

IV. CONCLUSION

We have described a parallel 3D device simulator based on
the ensemble MC method to model the carrier transport and
on the FE method to solve the Poisson equation on unstruc-
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Fig. 9. Average electron concentration after 4 ps in the cross-sections of the
device parallel and perpendicular to the source-drain direction in the middle
of the device (y = 0 and x = 0 planes).
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Fig. 10. Average electron velocity in the x-direction after a simulation of
4 ps with a time step of 0.1 ps along the device at VD=0.05 V and VG=1.1 V.

tured tetrahedral meshes. This device simulator is aimed for
modelling of novel, thin-body transistor architectures with a
complex 3D geometry. The code exhibits excellent parallel
performance while keeping a maximum portability. First, we
have presented a simulation example by modelling a 10 nm
gate length Si DG MOSFET with a body thickness of 6.1 nm
and a gate dielectric stack of 0.5 nm, showing a good agree-
ment with the drift-diffusion simulations at a low gate voltage
of 0.05 V. We have also shown the magnitude of the self-forces
arising because of the use of tetrahedral elements. After this,

we have presented the results from the simulations of a TriGate
FinFET with rounded corners and a gate length of 40 nm.
We have presented the approach how we have implemented
the quantum corrections using density gradient method in the
code. The quantum corrections due to carrier confinement will
be a requirement when these architectures are scaled into even
smaller gate lengths. We have presented preliminary results
from the 3D MC device simulations at high gate and low
drain voltages.
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