
Quasi-Ballistic Transport in Nanowire
Field-Effect Transistors

Giorgio Baccarani, Elena Gnani, Antonio Gnudi, Susanna Reggiani

(1)

Fig. 1. Left: Schematic representation of a gate-all-around cylindrical
nanowire FET. Right: Typical subband-edge profile along a nanowire FET.

theory [2] as was done in previous works [3]-[7] but, rather,
determine the appropriate boundary conditions to be applied
to the distribution function for both positive and negative
velocities. So doing, we need not splitting the BTE in two
coupled equations for f+ and f-, and succeed in finding its
exact solution within the constraint of purely-elastic collisions.
Figure 1 shows a sketch of a cylindrical NW-FET and the
typical space dependence of the first subband edge, referred
to as E c (x). In our approach, scattering events are accounted
for via the relaxation-time approximation (RTA), which holds
for elastic collisions only. It may be shown that the RTA is
actually exact in 1D for intra-subband scattering, and that
inter-subband scattering can be approximately emulated by
intra-subband scattering by applying suitable weighting factors
to the scattering rates. Assuming negligible inelastic collisions,
the RTA is valid even beyond the onset of degeneracy, since
the terms accounting for the exclusion principle within the
scattering integral cancel out. The BTE thus takes the usual
form

u af _ ~ E af __ f - fo
x ax It x akx - r(x, kx )

but fo(x, kx ) represents in this case the even part of f(x, kx ).

Under the assumption of purely-elastic scattering, fo(x, kx )

is no longer the local equilibrium distribution function, for
energy relaxation is ruled out. Therefore, isoenergetic colli­
sions cannot change the energy distribution, but can only affect
the momentum distribution of the carriers. Indicating with
fo(x,kx ) and fl(X,kx ) the even and odd parts of f(x,k x ),

respectively, and recognizing that the even and odd terms of
(1) must separately balance, we find the system of equations

U
x
afo _ ~ C

x
afo = _ It (2)

ax It akx r(x, kx )

u afl _ ~ E afl - (3)
x ax It x ak

x
- 0

where (3) is independent of fo (x, kx ) and takes the standard
form of the 10 BTE with a vanishing collision integral. As

Abstract-In this work we investigate quasi-ballistic transport
in nanowire field-effect transistors (NW-FETs) by addressing
the ID Boltzmann transport equation. First, we find its exact
analytical solution for any potential profile within the constraint
of dominant elastic scattering. Next, we calculate the I-V
characteristics of the NW-FET, which differ from the Lan­
dauer expression for the inclusion of a transmission coefficient
smaller than one. Our approach provides a methodology for the
calculation of the transmission and backscattering coefficients
directly from the scattering probabilities. These coefficients turn
out to be functions of the ratio between the device length and
a suitably-averaged momentum-relaxation distance. One of the
main conclusions of the paper is that, so long as inelastic collisions
are neglected, the so-called kT-layer plays no role in ID devices.

II. BTE SOLUTION WITH QUASI-BALLISTIC TRANSPORT

In this section we address the solution of the ID' BTE
within a NW-FET under quasi-ballistic transport conditions.
In doing so, however, we do not rely on McKelvey's flux

I. INTRODUCTION

Ballistic and quasi-ballistic transport in silicon planar MOS­
FETs and nanowire (NW) FETs has been the subject of many
investigations. Most papers tackle the problem numerically, of­
ten using transport models which address either the Boltzmann
transport equation (BTE) by Monte Carlo and deterministic
techniques, or the open-boundary Schrodinger equation. To
date, there is a general consensus on the conclusion that the
role of scattering is never negligible, at least quantitatively,
even at the shortest channel lengths [1].
In this paper, we work out an exact analytical solution of the
ID BTE under the assumption of negligible optical-phonon
(OP) scattering. This solution allows us to work out closed­
fonn expressions for the current and carrier concentration in
NW-FETs at the computational cost of a numerical integral
for every energy and bias point. The potential profile along
the channel is computed by numerically solving the coupled
Schrodinger-Poisson equations. Self-consistency is achieved
by iteration of the procedure.
This paper is organized as follows: in Section II we develop
the analytical solution of the 1D BTE under general potential
profiles along the nanowire. In Section III the 1- V character­
istics are worked out and compared with results provided by
a numerical BTE solver. Also, a procedure for the calculation
of the transmission and backscattering coefficients is outlined.
Conclusions are drawn in Section IV.
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The integral on the r.h.s. of (6) requires Ec(x) to be known
since both U x and T are functions of c = H - Ec(x). By
defining the carrier mean-free path A = lux IT, equation (7)
holds if a suitable average Ax is taken between 0 and x.
Referring again to the inflow from the source contact, the
boundary conditions Fo(O, H) and F1(H) can be found by
imposing 1(0, kx ) = Fs(H) for kx > 0 and I(L, kx ) = 0 for
kx < O. A third relationship comes from (6) at x = L. This
leads to a set of three equations in the unknowns Fo(O, H),
Fo(L, H) and F1 (H), the solution of which is

Fo(O, H) = Fs(H) T
av + Tt (8)

2Tav + Tt

Fo(L, H) = Fs(H) T
av (9)

2Tav + Tt

F1(H) = Fs(H) T
av (10)

2Tav + Tt

where Tt is the transit time for electrons with total energy H
and 1/Tav is the inverse relaxation time averaged along the
electron path from the source to drain contacts with lux /- 1 as
a weighting function, namely

T~V = {1£ 1:1r1 1£ luxlr%, kx ) (11)

L being the device length. The resulting average relaxation
time is itself a function of H. By defining 1/Aav as the
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Fig. 2. Top: Position dependence of the lowest six subband edges for Vcs =
0.8 V and VDS = 1 V across a NW-FET with diameter d = 5 nm and gate
length L g = 13 nm. Bottom: Comparison of the electron transit time Tt and
the average relaxation time Tav versus total energy H. The discontinuities of
T a v at four energies are due to the crossing of the second, third, fourth and
fifth subband edges at the source. contact.

average value of l/A from 0 to L, Tt/Tav = L/Aav so that
the above ratios can be used interchangeably. The distribution
function for H > Ec(xm ), X m being the position of the
maximum potential energy referred to as virtual source, is thus
f(x, kx ) = Fo(x, H) ± F1(H).
Electrons departing from the source contact with an energy
smaller than the barrier height, i.e. H < Ec(xm ), are reflected
back to the source and do not contribute to the current. In this
case, the integral on the r.h.s. of(6) extends from 0 to the turn­
ing point X r such that E c(xr ) = H, and back. Therefore, the
distribution function is f (x, kx ) = Fs (H) for either positive
and negative values of kx . It may thus be concluded that the
distribution function of electrons with energy H < Ec(xm )

is entirely set by the boundary condition. If electrons enter
the nanowire with an equilibrium distribution, they will retain
such a distribution in the whole region at the left of the
virtual source x m . Similar considerations can be worked out
for electrons entering the NW-FET from the drain side. For
the sake of brevity, we do not report this treatment, which
leads to the same equations as before, with the interchange of
the 0 and L sections.
The computation of the distribution function starts from the
definition of the scattering probability in the nanowire induced
by acoustic phonons and surface roughness. We then integrate
these terms over all final states, and find the inverse relaxation
times for both scattering mechanisms in the fourfold and
twofold degenerate valleys of the conduction band. Next, we
compute the average value of the inverse relaxation time T;;,}
weighted by the inverse velocity lux 1-1 according to equation
(11), and the transit time Tt for any value of the energy
H > Ec(xm ) along the electron trajectory. Both Tav and Tt are
plotted in figure 2 for a 5 nm diameter FET. The small negative
wiggles are due to the intersections of the constant energy H
with the second and higher subbands. At the intersection points
the scattering probability diverges due to the 10 behavior of

(6)

(5)

(7)

l
x dx'

Fo(x, H) = Fo(O, H) - F1(H) 1 1( k)
o U x T x, x
X

= Fo(O,H) - F1(H) Ax

the solution of which is

is known, any function of the hamiltonian F1 (H), with H =
Ec(x) + c(kx ) fulfills equation (3). However, H(x, kx ) is an
even function of kx while 11(x, kx ) is an odd function of
kx . Therefore, with reference to the inflow from the source
contact, the solution of (3) is

ft(x,kx ) = I~:I F1(H) (4)

which is clearly odd. The factor (kx/lkxl) ±1 according
to whether kx > 0 or kx < 0, respectively. The odd part
of the distribution function 11 (x, kx ) retains the functional
dependence on H imposed by the boundary condition at the
source contact. However, being H(x, kx ) = Ec(x) + c(kx ),

the functional dependence of 11 (x, kx ) upon position and
momentum is expressed via H(x, kx ). The invariance of 11
at constant H is a somewhat surprising result due to the com­
bined effect of our assumption of purely-elastic scattering and
to the general principle of current conservation. If electrons
always travel at constant energy across the nanowire FET, then
current conservation is required at every energy.
With 11(x, kx ) known, it is now possible to address the
solution of (2). To this purpose, we set fo(x, kx ) = Fo(x, H).
This definition is legitimate since fo is an even function of
kx . We thus find the equation

aFo 1 kx
U x ax = -~ Ikxl F1(H)
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Fig. 3. Perspective plot of the distribution function versus position and
velocity for the 5 nm FET. The computation is carried out at Vas = 0.8 V
and VDS = l.OV.

the density of states and the size of the wiggles is related
with the discrete mesh in space and energy. The mesh spacing
we typically use is ~x == 0.2 nm and ~E == 0.5 meV. By
reducing the mesh spacing, the size of the wiggles reduces as
well, and the curve tends to its upper envelope.
The strong discontinuities in figure 2 are due to the crossing of
different subbands, which are nearly flat in the source region,
as shown in the upper part of the figure. Therefore, the integral
of 1/T takes a very large value due to the large density of states
near the subband bottom, and its inverse drops down. The
transit time exhibits instead a regular behavior, and decreases
monotonically as the energy H increases, as expected. It may
be interesting to notice that, while Tav and Tt are roughly
comparable in the high-energy region, at the lower energies
Tav < Tt, indicating that some collisions are expected to occur
for low-energy electrons.
Figure 3 shows a perspective plot of the distribution function
f (x, ux ) versus position and velocity for the 5nm FET. The
computation is carried out at Vcs == 0.8 V and VDS == 1.av.
This plot indicates that the majority of electrons travels with
positive velocity at the source side of the channel for this
device and that a only smaller portion is backscattered. The
vanishing value of f(L, u x ) for U x < a imposed by the
boundary condition is also clearly visible from the figure.

III. CURRENT AND CARRIER CONCENTRATION IN THE

NANOWIRE

The contribution of one subband to the nanowire current
requires only the knowledge of the odd part of the distribution
function. If we assume that electrons enter the source contact
with a Fermi distribution function, we find

1'0 = 2q~BT R t In {I + exp (EFS ~:;(xm))} (12)

which is basically Landauer's formula [8] for the nanowire
current. In this expression the density of states and the group
velocity cancel out any dependence of the first factor upon
the effective' mass, so that the latter turns out be a universal
constant. The transmission coefficient is defined as the statis­
tical average Rt = (2Tav /(2Tav +Tt)) weighted by the Fermi
function. When the contribution to the current of the electrons
coming from the drain is considered, equation (12) is modified

as follows

, 2qkBT { 1 + exp {[EFS - Ec(xm)]/kBT} }
I D == -h- R t In 1 + exp {[EFD - Ec(xm)]/kBT}

(13)

and EFD == EFS - qVDS. So far we have been considering
only the contribution from one subband to the nanowire
current. By neglecting inter-subband interactions, the total
drain current IDs may thus be expressed as a sum of terms
like (13). A nice property of (13) is that the current reverses
if we exchange the source and drain contacts, as is supposed
to be for a symmetric structure.
The transmission coefficient may also be expressed as Rt ==
2Ap /(2Ap + L), where Ap can be regarded as the elastic­
scattering mean-free path. This coefficient tends to 1 if the
channel length L « 2Ap since, in this limit, the number
of scattering events is negligible and the transport is near
ballistic. In the opposite limit, instead, this factor tends to 0
since the large number of scattering events re-establishes the
symmetry of the distribution function. However, before this
limit is reached, the transit time would become comparable
with the energy relaxation time, at which point the transport
becomes dominated by drift-diffusion and the present solution
would break down.
The reflection, or backscattering coefficient Rr can easily be
extracted from the transmission coefficient, being its comple­
ment to 1, i.e. Rr = 1 - Rt == L/(2Ap + L). Although
quasi-ballistic transport has been thoroughly investigated in
the literature [3]-[7], this theory provides for the first time a
methodology for the quantitative computation of transmission
and reflection coefficients from the basic scattering probabili­
ties. In the literature, the backscattering coefficient is usually
extracted from the low-field mobility value. This methodology,
however, does not consider that the scattering rate is heavily
affected by the high average energy of the carriers.
Compared with previous work by Lundstrom and coworkers
[3]-[7], our definition of transmission and reflection coeffi­
cients is somewhat different. Our formulation of the problem
based on the calculation of Landauer's formula, suggests us
to define R t as the ratio of the net electron flows with and
without backscattering. The two situations are characterized by
the same positive flow injected from the source, but the charge
densities would be different due to the additional negative flow
generated by backscattering. In the above references, instead,
the transmission coefficient is defined for a constant charge
density at the virtual source and, with this definition, it is
found to be (using our notation) R~ == (1 - R r )/(l + R r ).

At constant charge, R~ is in fact reduced both by the lower
positive flow and by the negative contribution to the current of
backscattered carriers. Ifwe reconcile our definition of Rt with
that in Ref. [3] by inserting the electron concentration at the
virtual source into equation (13), the transmission coefficient
at constant charge density would become R~ = Ap / (A p + L).
Figure 4 shows the turn-on characteristics, both in log and
linear plots, of a 3 nm diameter FET with a gate length
L g == 13 nm and a drain voltage VDs == 1.0 V. The results
of the present model are compared with those of a numerical
BTE solver [9], which fully accounts for the subband coupling
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The solution of the numerical BTE solver accounting for all
scattering mechanisms, including OP, does not greatly deviate
with respect to the solution accounting for AP and SR only. If
we consider larger-diameter devices, however, the quality of
the agreement degrades slightly in strong inversion as shown
in figure 5, where the tum-on characteristics of the 5 om FET
are compared. The larger discrepancy is due to the stronger
subband interaction enabled by the smaller distance between
the subband edges, which makes inter-subband scattering more
intense. More specifically, we notice that the present model
now predicts a smaller current in strong inversion, with errors
as large as 10-12%.

IV. CONCLUSIONS

In this work we have investigated quasi-ballistic transport
in NW-FETs by analytically solving the ID BTE within
the assumption of dominant elastic scattering. Inter-subband
interactions are accounted for as intra-subband collisions using
a suitable weighting factor. The analytic solution is then used
to work out closed-form expressions for the nanowire I-V
characteristics. As opposed to the 2D case, it is found that
the kT-layer plays no role in ID, and that the backscattering
coefficient is a function of the ratio between channel length
and momentum-relaxation distance. However, optical phonon
emission, neglected in this treatment, is likely to set a limit to
the extension of the region beyond the virtual source where
backscattering can be effective. This extension is estimated to
be Lnw + Aop , L nw being the distance from the virtual source
at which the subband edge drops by the phonon energy hAJJ,
and Aop the phonon-emission mean-free path.
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Fig. 4. Log and linear plot of the tum-on characteristics of a 3 nm NW-FET
with a gate length L g == 13 nm and an oxide thickness tox == 1 nm according
to the present model and a numerical BTE solver from Ref. [9].
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Fig. 5. Log and linear plot of the tum-on characteristics of a 5 nm NW-FET
with a gate length L g == 13 nm and an oxide thickness tox == 1 nm according
to the present model and a numerical BTE solver from Ref. [9].

due to both inter-subband elastic and inter-valley inelastic
collisions. The computations separately account for AP and AP
+ SR scattering, and the agreement between the two models
is nearly perfect in both cases from subthreshold to strong
inversion. The slight discrepancy that shows up in strong in­
version is thought to be due to the fact that electrons scattered
in the upper subbands are unlikely to be backscattered to
reach the source, due to the higher energy barrier behind
them. In our model, instead, we basically replace an inter­
subband scattering with an intra-subband scattering, so that
the electron can possibly climb the barrier in its way back
to the source. As a result, the simulated current is slightly
smaller in our model with respect to that computed with the
numerical BTE solver. An additional remark is that, being
both computations self consistent, a small deviation in the
current flow and electron concentration would modify the
electrostatics via Poisson equation, thus yielding a slightly
modified electric field along the channel.
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