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Abstract 

Device simulation needs are growing more diverse and it is difficult for traditional 
simulators to satisfy them while maintaining usability, maintainability, speed, and 
robustness. The Modular Device Simulator (MDS) is a completely new simulator 
framework that addresses this problem by providing simulation building blocks 
within a dynamic, runtime-configurable framework driven by a scriptable input 
parser. This flexible framework allows MDS to be applied to a wide range of 
problems that traditionally would have been handled by many independent codes. 
MDS has been applied to the 45 nm node and beyond, including advanced 
applications such as Schrödinger/drift-diffusion and non-equilibrium Green's function 
(NEGF). 

1 MDS Architecture 

MDS is written in C++ and is based on a set of standard objects: Solvers, 
Domains and Fields. A Solver interacts with a set of Domains or subsolvers through a 
strict protocol to assemble and solve a particular type of problem. A Poisson 
simulation, for example, might use a Newton Solver that operates on a set of 
electrode, interface, Laplace, and Poisson domains. The Newton Solver calls on each 
of these Domains as it assembles a global Jacobian and then solves a series of bias 
points under control of a boundary condition iterator object. New Solvers can be 
added that either use existing Domains or that use new kinds of Domains, possibly 
with new Domain/Solver protocols. 

A Domain assembles part of a problem for a Solver. In MDS, each material 
region has a separate mesh, and one or more Domains are typically defined for each 
electrode, interface, or bulk mesh. Domains can also be defined across mesh regions 
for non-local phenomena such as tunneling. 

A Field represents a mesh-based quantity such as a device model or solution 
variable for a single Domain. Different element types (integer, real, vector, etc.) are 
possible, as are different Field value locations (node-based, edge-based, element-
based, etc.). A Field can have arguments, i.e., other Fields that it uses in computing 
itself. The primary function of a Field is "update", which takes an argument 
specifying what to update, including the field value itself and possibly derivatives. 
This function recomputes just what is needed, based on timestamps of itself and its 
arguments. MDS dynamically creates and hooks up just those Fields that are actually 
needed by instantiated Domains. 
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2 Configuration And Operation 

A key feature of MDS is its dynamic configuration, which is largely enabled by 
the parameter database (pdb), a tree structure in memory organized somewhat like the 
Unix filesystem, for getting and setting values. Example value types include integer, 
real, string, and vector. Pdb creation areas define default configuration information 
for MDS objects, and each instantiated MDS primary object is also provided a 
runtime pdb area where it can read and write values for communication with other 
objects. The pdb is initialized from a file and modified during runtime to further 
customize system configuration. 

MDS uses a Tcl input parser. Commands provide a high-level interface similar 
in appearance to legacy simulators, but are also able to directly access Fields, the pdb, 
and other data that is inaccessible in traditional simulators. 

The MdsUserLib is an incr Tcl library that automates set-up and execution of 
simulations. Its key object is the MdsSim, which instantiates Domains and Solvers 
based on rules in the pdb. The MdsSim is subclassed for different kinds of 
simulations. Examples include the PoissonSim for Poisson-only and DD2CarrierSim 
for two-carrier device simulations.   

3 MDS Applications 

The extensibility and utility of the MDS system is clearly demonstrated in a 
self-consistent Schrödinger drift-diffusion simulation of a Tri-Gate transistor[1]. Here 
a particular simulator object, the PCCSSim, instantiates 3D bulk Poisson, 3D bulk 
Laplace, 3D bulk current-continuity, interface, and electrode Domains under control 
of a Newton Solver, as in a standard 3D drift-diffusion simulation. It also instantiates 
a set of 2D Schrödinger Domains and Solvers on slice meshes at cross-sections along 
the length of the device. The scripted PCCSSim object implements a predictor-
corrector algorithm that successively calls the Poisson/drift-diffusion and Schrödinger 
Solvers. During iteration, slice Fields present 2D views of the potential to the 
Schrödinger Domains and a composite Field assembles quantum correction values on 
each 2D slice into a single 3D Field for the Poisson and current continuity Domains, 
as shown in Figure 1. Corrections are calculated with a 3-valley conduction band 
model for the electrons. 

Much of the power of MDS comes from its ability to implement a totally new 
type of simulator such as the PCCSSim predictor-corrector by dynamically 
interconnecting standard Domains, Fields, and Solvers at runtime using new incr Tcl 
objects. Solution control and data communication between objects make use of 
standard protocols and mechanisms from the MDS system. In addition, the high-level 
algorithm is written in an easily modified scripting language without significant 
performance penalty because actual computation takes place in the compiled Domain, 
Field, and Solver objects. 

Figure 2 shows the Tri-Gate device with conduction band energies at bias and 
Figure 3 shows resulting Schrödinger densities. Other types of simulations are also 
available, such as nonisothermal, hydrodynamic, K•P, and NEGF. Many structures 
have been simulated, including MOS, flash, nanowire, and nanotube. 
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Figure 1: Slice Fields pass potential ψ to Schrödinger Domains; Composite Field 
assembles correction factor λ for drift-diffusion Domains. 

Figure 2:  Tri-Gate structure, showing conduction band energy. 
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Figure 3:  Schrödinger densities are shown clockwise from upper left for  <100>, 
<001>, and <010> valleys;  and total. 

4 Conclusion 

MDS has introduced a new architecture with proven extensibility for advanced 
studies. It has demonstrated robustness and efficiency in production use for the 45 nm 
node and provides the basis for a wide range of future applications. 
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