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Abstract

It is announced that the Maxwell equations can be solved on unstructured grids using
finite integration methods. Numerical experiments show that next to the finite-volume
method, a discretization technique can be defined based on ’finite-surface’ integration.

1 Introduction

Electromagnetic field simulations are extensively used for characterizing interconnects
and integrated passives at high frequencies. Apart from the approach based on sub-
dividing the field problem into ’partial equivalent electric circuits’ (PEEC), the most
common approaches are based on generalized finite-element methods (FEM) or finite-
integration technique (FIT). An in-depth view informs us that there is an important
distinction between FEM and FIT: whereas FEM approximates a continuous function
over the simulation domain by a piecewise continuous function [1, 2], FIT does not pro-
vide knowledge of the function between the grid points. The finite-integration method
considers the values at the grid points as ’fair’ representatives of the values in the sur-
rounding of the grid points, no further assumptions are made what the precise values
must be at locations where no grid point is placed. A consequence of the viewpoint of
FIT is that discretized equations are derived from balance equations, where fluxes from
one volume element into neighboring ones must satisfy conservation laws. In other
words: solving for example the differential equation

∇ ·J +
∂ρ
∂ t

= 0 , (1)

requires that the following algebraic differential equations are solved:

ni

∑
j=1

Ji jΔSi j +
∂ρi

∂ t
Δvi = 0 ∀ i , (2)
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where Ji j is a discretized version of the current density between node i and node j
and ρiΔvi is the nodal value of the charge density weighted with the nodal volume. In
particular, if J = −σ∇V then a good representative for this current is Ji j = −σ(Vj −

Vi)/hi j, where hi j is the distance between node i and node j. The finite-integration
method is a well-known and widely used method in TCAD, since scalar quantities such
as p and n as well as V (the electrostatic potential) fit nicely into above view point. FIT
is also known as the finite-volume method (FVM).

The Maxwell-Ampere equation

Recently, we have extended the finite-integration method to include vector variables
[3, 4]. In particular, the vector potential A that describes the magnetic induction, B =
∇×A is placed on the computational grid starting from Ampere’s law

∇×

(

1
μ
∇×A

)

= J +
∂D
∂ t

. (3)

By considering a link, l in the computational grid and its associated dual surface ΔSl ,
we find that the discretized version of (3) becomes

∑
lk

ΛlkAk/μk = Jl ΔSl +
∂Dl

∂ t
ΔSl , (4)

where Λ are geometrical factors. Whereas the transition in going from (1) to (2) re-
quired the use of Gauss’ theorem, the use of Stokes’ theorem is needed in obtaining (4)
from (3).
It is an interesting fact to note that Gauss’ theorem and Stokes’ theorem are two real-
izations of the fundamental theorem of differential geometry

∫

∂Ω
ω =

∫

Ω
dω , (5)

which merely expresses the fact that the method of partial integration has a very gen-
eral validity. In particular, Gauss’ theorem corresponds to ω = D · dS and ∂Ω is the
enclosing 2-D surface of a 3-D volume Ω whereas dω =∇ ·D d3v. In a similar manner,
Stokes’ theorem is obtained by taking ω = A · dl , ∂Ω is the enclosing 1-D contour
of a 2-D surface Ω and dω = ∇×A · d2S. It should also be noted that the differential
character of the vector needs to be respected when applying (5). That means that D is
a two-form i.e. a vector that corresponds to a flux or current density and A must be a
one-form i.e. a vector that corresponds to a velocity or field intensity).
Whereas the results in [3, 4] were obtained on structured grids we demonstrate that the
Maxwell-Ampere equation can also be obtained on unstructured grids using a variant
of the finite-integration method. In particular, the Stokes’ theorem applies on general
Delaunay grids. It should be emphasized that this is a highly non-trivial observation,
since for obtuse volume elements links can have a negative dual area. The evaluation of
the circulation around links with negative dual area is compensated by link contributions
with large positive dual area such that the net result is in full agreement with the results
obtained in grids which do not contain obtuse volume element.
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In fact, above observation leads to the conclusion that starting from (5), one must adapt
the discretization scheme to the differential geometrical character of the equation that
needs to be solved. The finite-volume method (FVM) naturally matches to discretize
the balance equation as shown in (1). In an analogous way, a ’finite-surface method’
(FSM) is suitable to discretize the equation (3).

Demonstration

We demonstrate the validity of our claim by computing the inductance of an integrated
spiral inductor as shown in Fig. 1 (a), using different meshes. The first mesh has a

Figure 1: Layout of the spiral inductor (a). Zoom-in of an unstructured grid (b).

structured grid while the second grid contains generalized elements, but all elements are
acute. The third grid also contains obtuse elements which is in general the result from
a Delaunay algorithm. Fig. 1 (b) shows a detailed view on one of the unstructured grids
that is used. In Fig. 2, the results for the inductance are shown using a structured grid
as well as an unstructured grid. Excellent agreement is observed. The computation is
achieved by solving the Maxwell-Ampere equation as well as the Poisson equation with
voltage boundary conditions. After obtaining balance of the currents, the S-parameters
are computed from a two-port system. Each port contains one contact at the inductor
and one contact attached to the substrate. Finally, the inductance (and resistance) is
extracted from the S-matrix.

Conclusion

We announce the possibility to discretize the Maxwell-Ampere system on unstructured
grids such as 3D Delaunay grids, octree grids and variations thereof. All that is re-
quired is that the nodes of the volume cell are located on a sphere and that no other grid
point is found in this sphere. The underlying discretization is a generalization of the
finite-integration method. One does not need to refer to Nedelec’s edge conformal base
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Figure 2: Inductances obtained on a structured and unstructured grid.

functions. However, one must assign degrees of freedom to the links of the computa-
tional grid as proposed in [3, 4]. The consequence of above observation is far reaching:
existing device simulators can now be upgraded to solve the Maxwell-Ampere system.
Although a mathematical proof is still lacking that the finite-surface method is a valid
approach, numerous simulation experiments indicate that the method is sound. An im-
portant ingredient for the validity of the method is that the underlying grid must satisfy
the Delaunay criterion. Unstructured grids can be created that do not obey the Delau-
nay criterion, yet leading to solutions that satisfy current balance, but the values of the
currents do not converge to the correct limits for refined grids. Grids that do satisfy the
Delaunay criterion do not suffer from this incorrect asymptotic behavior.
The present work was not motivated by the desire to perform computation on grids with
many obtuse elements, but to address industrial applications. For the latter it is essential
to compute on unstructured grids, since the complexity of such structures, would lead
to far too-many grid nodes on structured grids.
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