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Abstract

In order to investigate the technological potential ascribed to semiconductor nanowires,
it is paramount to include quantum effects into the models used to simulate carrier trans-
port as well as optical and excitonic features of various nanowire layouts.
In particular, one needs to determine the energy eigenvalues and eigenfunctions of the
charge carriers in terms of material parameters and tunable parameters, such as the ex-
ternal voltages and the wire radius. As the latter may be running from a few nanometers
up to a few tens of nanometers, the number of occupied subbands may substantially in-
crease. Consequently, a flexible Poisson–Schrödinger solver needs to be invoked to
minimize the computational burden, especially when it is to be integrated into another
simulation program.

1 Introduction

In this paper we present a robust Poisson–Schrödinger solver that can be used as a basic
building block for simulation programs addressing electrical transport characteristics
[1, 2] as well as optical properties [3] of semiconductor nanowires. We summarize the
theoretical background and the numerical approach underlying the simulation program
and show some typical transport related results obtained for a Si nanofet. Though being
developed for a cylindrical quantum wire, as shown in Fig. 1, the theoretical framework
can straightforwardly be extended to other geometries.

2 Theory

Consider a cylindrical Si nanowire with radius R consisting of two heavily n+doped
source and drain regions, separated by an unintentionally doped p-type channel region
with length LCH. Choosing the z-axis along the symmetry axis of the wire (assumed to
be a <0,0,1> direction), we introduce cylindrical coordinates r,φ ,z. Applying gate and
drain voltages generally induces an electrostatic potential profile V (r,z) which, together
with the oxide barrier UB(r,z), is part of the potential energy U(r,z) =UB(r,z)−eV(r,z)
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Figure 1: Si nanowire with cylindrical symmetry

entering the one-electron Schrödinger equation
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ψαmlk(r,φ ,z) = 0 (1)

with mα⊥ = 2mαxmαy/(mαx + mαy). mαx,mαy,mαz are the effective masses at the bot-
tom of the α-th valley, and m, l,k are quantum numbers labeling the electron eigenstates.
Then the electron concentration inside the channel may be extracted from

n(r,z) = 2 ∑
m,l,k

|ψαmlk(r,φ ,z)|2F(Eαmlk), F(E) ≡ (1 + exp(E −EF)/kBT )−1 (2)

Adopting a classical treatment for holes, we evaluate the hole concentration as

p(r,z) = NV exp

(
Eg + EF +U(r,z)

kBT

)
(3)

where NV is the effective valence band concentration (bulk) and Eg denotes the bandgap.
Assigning a uniform donor profile N+

D to the source and drain regions, the total charge
density in the nanowire is obtained from

ρ = e
(

p(r,z)−n(r,z)+ N+
D

)
(4)

A conventional Schrödinger–Poisson solver now combines Eqs. (2), (3) and (4) to solve
them self-consistently with Poisson’s equation

∂ 2V (r,z)
∂ r2 +

1
r
∂V (r,z)
∂ r

+
∂ 2V (r,z)
∂ z2 = − 1

εs
ρ(r,z), εs = Si permittivity (5)

Consequently, the Schrödinger equation needs to be solved each time when a new iter-
ation of the potential profile is being imposed which is a CPU-intensive task. On the
other hand, the local density approach giving rise to classical, local relations between
potentials and carrier densities such as Eq. (3) is computationally less expensive but
entirely ignores quantum mechanical reflections and confinement effects. As a trade-
off we have adapted the generalized local density approach introduced by Paasch and
Uebensee [4] for studying planar structures and quantum wells to the case of a nanowire
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MOSFET. Their approach basically amounts to providing a quantum mechanical treat-
ment of all abrupt potential barriers, such as the Si/insulator barrier while retaining a
classical description for the smoother parts of the potential profile in both the radial and
z-direction. Practically, we solve the Schrödinger equation for a flat profile V (r,z) = 0
but accounting for an infinite Si/insulator barrier confining the electrons to the wire,
yielding the one-electron spectrum

Eαmlk =
h̄2k2

2mαz
+

h̄2x2
ml

2mα⊥R2 , m = 0,±1,±2, . . . , l = 1,2, . . . , (6)

ψαmlk(r,φ ,z) = Cml Jm

(xmlr
R

)
eimφ eikz, Cml =

1√
2πR|Jm+1(xml)|

(7)

where xml is the l-th zero of the m-th Bessel function Jm(x). Next, we impose the profile
V (r,z) as a local perturbation of the energy eigenvalues, thereby rewriting Eq. (2) as

n(r,z) =

(
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πR

)2 ∞

∑
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Defining a two-dimensional grid of (ri,z j) points and providing an educated initial
guess for the potential profile V (ri,z j) into Eqs. (8) and (3), we extract a charge den-
sity profile from Eq. (4). Substituting the latter into the discretized Poisson equation,
we recalculate the potential using a Gauss-Seidel iteration scheme until convergence is
reached.

3 Results

As a typical result, we have shown in Fig. (2) the electron density and the potential
profile for a R =10 nm nanowire with a LCH =20 nm channel length for three different
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Figure 2: Electron concentration (left) and potential energy profile (right) in the middle
of the channel versus r for various gate voltages VG.
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values of the gate voltage VG. The lateral size quantization is clearly reflected in the
electron concentration tending to zero when r → R. Note also the occurrence of volume
inversion emerging from the significant portion of electrons residing in the central part
of the wire.
Finally, as a mere illustration, Fig. (3) compares longitudinal potential energy profile at
the wire center (r = 0) for various channel lengths at zero drain and gate voltages.
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Figure 3: Potential profile (built-in potential) along the z-direction for various channel
lengths.

4 Conclusion

Offering a trade-off between quantum mechanical rigor and speed, the above presented
Poisson–Schrödinger solver is a promising candidate for implementation in numerical
programs that need to rely on a fast evaluation of quantum mechanical charge density
profiles in semiconductor quantum wires.
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