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Abstract

We present a derivation of exponential shape functions for the convection diffusion
problem. The shape functions are defined for triangular elements and can be regarded
as an extension of the one-dimensional Scharfetter-Gummeldiscretization scheme to
two dimensions. The shape function varies exponentially inthe direction of the element
field vector and linearly in the direction orthogonal to the element drift velocity vector.
A conservative discretization scheme is constructed by means of the box method. The
resulting element matrix is not necessarily an M-matrix. A measure to stabilize the
discretization is briefly outlined.

1 Introduction

With the advent of strain engineering in CMOS technology themodeling of carrier
transport in anisotropic media has considerably gained in importance. Today’s TCAD
tools employ virtually exclusively the Scharfetter-Gummel (SG) discretization scheme
for the convection-diffusion equation [1]. This scheme is derived assuming current
conservation along the edges of a mesh. For certain applications, such as magneto-
transport and transport in anisotropic media, however, theone-dimensional treatment
of the edge currents is no longer sufficient and two-dimensional extensions of the SG
scheme have to be sought. An established solution to this problem has been proposed
in [2] and [3] and is known as the edge-pair method [4]. This method attempts to
reconstruct a current density vector for a triangular element from three projections on
the edges, whereby these projections are again determined by the one-dimensional SG
expression. In this work an alternative method of extendingthe SG scheme to higher
dimensions is pursued. Besides the coefficients of the discrete equation system the
method also gives interpolation functions for the carrier concentration and the current
density within the element

2 Extension of the Scharfetter-Gummel Scheme to two Dimensions

In analogy with the one-dimensional SG scheme which guarantees current conservation
along an edge, one can demand current conservation within a simplex element in higher
dimensions as well. Therefore, we look for analytical solutions of the carrier continuity
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Figure 1: Local coordinate system
spanned byE andw, which are orthog-
onal for an isotropic mobility. Also
shown are the projections of the node
vectors onto the coordinate axes.
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Figure 2: Intersection of the Voronoi
box for nodei and the element. The cur-
rent sumIi = Iik + Ii j can be obtained
by integration ofJ(x) along the line
Q jQk.

equation,∇Tµ̂(nE +UT ∇n) = 0. For the purpose of discretization the mobility tensor
µ̂ and the electric field vectorE are assumed to be constant within the element. In two
dimensions analytical solutions can be found by means of ansatz functions of the form
n1(x,y) = A(x) + B(y) andn2(x,y) = C(x)D(y). Keeping only terms invariant under
coordinate system rotation, one obtains a solutionn = n1 + n2 containing three free
parameters, which can be used as an interpolation function for triangular elements.

n(x) = a + bwTx + ce−ETx/UT (1)

The vectorw is orthogonal to the drift velocity, which implieswT E = 0 for isotropic
media andwTµ̂ E = 0 for anisotropic media. VectorsE andw define a non-normalized
local coordinate system for a given triangle, as shown in Fig. 1. We define the local
coordinates asψ = −ETx andη = wTx. Within a triangle the concentration (1) varies
exponentially in theE direction and linearly (pure diffusion) in thew direction. The
coefficientsa,b,c in (1) are linear functions of the node variablesni,n j,nk, obtained by
solving the linear equation systemn(xl) = nl, l = i, j,k. An interpolation function of
the form (1) has already been used by Baliga and Patankar in a decoupled scheme [5].
Analytical solutions of the two-dimensional continuity equation were also reported in
[6]. In that work shape functions with four free parameters were sought, and rotationally
variant terms were retained.
From (1) the current density vector is readily derived asJ(x) = qµ̂[(a+bwTx)E+bw].
The current density is constant in theE direction and varies linearly in thew direction.
To construct a box discretization scheme we consider the intersection of the Voronoi
box for nodei with the trianglei, j,k (Fig. 2). One needs to determine the normal
currentsIik andI jk through the boundary patchesQ jM andMQk, respectively. Because
of current conservation the current sumIi = Iik + Ii j is independent of the position of the
circumcenterM and can directly be obtained by integrating the normal component of
J(x) along the lineQ jQk. The result isIi = (qµ̂/2)

[

(a + bη̄i)(ηk −η j)+ b(ψk −ψ j)
]

,
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where η̄i = (2ηi + η j + ηk)/4 is theη coordinate of the midpoint betweenQ j and
Qk. The coefficientsa andb and henceIi are linear functions of the node variables
ni,n j,nk. The current can be written asIi = qµ̂(ciini + ci jn j + ciknk), where the off-
diagonal coefficients are of the form

ci j(η̄i) =
1

2∆
{

[uk(η̄i −ηi)−ui(η̄i −ηk)] (ηk −η j)+ (uk −ui)(ψk −ψ j)
}

(2)

cik(η̄i) =
1

2∆
{

[ui(η̄i −η j)−u j(η̄i −ηi)] (ηk −η j)+ (ui−u j)(ψk −ψ j)
}

(3)

Here,u = eψ/UT and∆ = ui(ηk −η j)+u j(ηi−ηk)+uk(η j −ηi) is a determinant. Note
that the transverse coordinates are linear functions of thenode potentials, which can be
written in matrix notation asη = Hψ , whereH is a constant element-dependent matrix,
andη = (ηi,η j,ηk)T , ψ = (ψi,ψ j,ψk)T . Other off-diagonal coefficients related to the
element under consideration are obtained from (2) and (3) bycyclic permutation of the
indices,i → j, j → k, k → i. Since the box method gives a conservative discretization
scheme, the coefficient matrix exhibits vanishing column sums,cii + c ji + cki = 0.

3 Discussion and Results

To discuss some properties of the coefficients (2) and (3) we choose a right angle tri-
angle (θk = π/2 in Fig. 2) and vary the field direction. The element field vector is
represented asE = E(cosϕ ,sinϕ)T . Fig. 3 shows that the coefficients associated with
the hypotenuse oscillate around a mean of zero. While for thestandard box method the
coefficientsci j andc ji vanish exactly forθk = π/2, with the exponentially fitted box
method only the angular average of these coefficients vanish. A discretization scheme,
however, requires the M-matrix property. Sufficient conditions are the vanishing col-
umn sum discussed above, and the non-negativity of the totalcoupling coefficients.
Since the total coefficientci j is the sum of the coefficients of the two elements sharing
the edgei, j, one of the two coefficients can be negative as long as the sum remains
positive. If the sum is negative, one has to stabilize the discretization. For this purpose,
a remarkable property of (2) and (3) can be utilized. We note that the coefficients are
linear functions of the coordinatēηi. If one now changes this coordinate within the
limits of the triangle, the current density will change byO(h), and the currentIi and the
related coefficients byO(h2). Therefore, consistent with theO(h) discretization one
can deliberately change thēηi to some other coordinateη∗

i . It can be shown that the
equationci j(η∗

i ) = 0 has a solutionη∗
i ∈ [ηi,ηk], which lies inside the element. For the

right angle triangle under consideration, the complementary coefficient (3) evaluated at
η∗

i turns into the well-known Scharfetter-Gummel coefficient.

cik(η∗
i ) = −

ηk −η j

2(ψk −ψi)
B

(

ψk −ψi

UT

)

=
d jk

2dki
B

(

ψk −ψi

UT

)

(4)

This property shows the way how two coefficients associated with the edge pair of a
certain node can simultaneously be made non-negative: The negative one is set to zero
and the value of the complementary one is determined from (4).
The new discretization scheme has been implemented in MINIMOS-NT [7]. A fully-
coupled Newton iteration is employed. The presented discretization and the one-dimen-
sional SG method are compared for a pn-diode, shown in Fig. 4.The diagonal edges
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Figure 3: Coefficients as a function of the
field direction for the hypotenuse of a right
angle triangle with aspect ratiod jk/dki = 1
and a maximum edge voltage ofEd jk = 2UT .

are either orthogonal (Mesh 1) or parallel (Mesh 2) to the average current direction.
The current obtained from the SG discretization is independent of the orientation of
the diagonal edges. Fig. 5 shows the differences of the currents from the exponentially
fitted box method with respect to the SG current. The difference is pronounced for a
coarse grid and vanishes for sufficiently fine grids. The applied voltage is 1V .
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Figure 4: Pn-diode with square elements split into
triangles. Left panel: Mesh1, right panel: Mesh2.
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Figure 5: Relative difference
with respect to the SG current.
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