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Abstract

We present a derivation of exponential shape functionsHerdonvection diffusion
problem. The shape functions are defined for triangular efésnand can be regarded
as an extension of the one-dimensional Scharfetter-Gurdiseletization scheme to
two dimensions. The shape function varies exponentialligérdirection of the element
field vector and linearly in the direction orthogonal to theneent drift velocity vector.
A conservative discretization scheme is constructed bynseathe box method. The
resulting element matrix is not necessarily an M-matrix. Aasure to stabilize the
discretization is briefly outlined.

1 Introduction

With the advent of strain engineering in CMOS technology tinedeling of carrier
transport in anisotropic media has considerably gainethportance. Today's TCAD
tools employ virtually exclusively the Scharfetter-Gumi&G) discretization scheme
for the convection-diffusion equation [1]. This scheme &ided assuming current
conservation along the edges of a mesh. For certain applicatsuch as magneto-
transport and transport in anisotropic media, howeverptiedimensional treatment
of the edge currents is no longer sufficient and two-dimeradiextensions of the SG
scheme have to be sought. An established solution to thidgmohas been proposed
in [2] and [3] and is known as the edge-pair method [4]. Thigdhud attempts to
reconstruct a current density vector for a triangular el#nfirmm three projections on
the edges, whereby these projections are again determyrtbe lone-dimensional SG
expression. In this work an alternative method of extendliegSG scheme to higher
dimensions is pursued. Besides the coefficients of the etis@quation system the
method also gives interpolation functions for the carrismaentration and the current
density within the element

2 Extension of the Scharfetter-Gummel Schemeto two Dimensions

In analogy with the one-dimensional SG scheme which guaesrdurrent conservation
along an edge, one can demand current conservation witlmimpdex element in higher
dimensions as well. Therefore, we look for analytical Sohs of the carrier continuity
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Figure 1: Local coordinate systemFigure 2: Intersection of the Voronoi
spanned by andw, which are orthog- box for nodd and the element. The cur-

onal for an isotropic mobility. Also rent suml; = ljx + lj; can be obtained
shown are the projections of the nodby integration ofJ(x) along the line
vectors onto the coordinate axes. Q;Qx.

equationJ'fi(nE +Ur0n) = 0. For the purpose of discretization the mobility tensor
{1 and the electric field vectdt are assumed to be constant within the element. In two
dimensions analytical solutions can be found by means a@tarfisnctions of the form
n1(x,y) = A(X) + B(y) andnz(x,y) = C(x)D(y). Keeping only terms invariant under
coordinate system rotation, one obtains a solutica n; + ny containing three free
parameters, which can be used as an interpolation funairanifngular elements.

n(x) = a-+bw'x + ce EX/UT (1)

The vectonw is orthogonal to the drift velocity, which implies™ E = 0 for isotropic
media andv' 1 E = 0 for anisotropic media. Vecto&s andw define a non-normalized
local coordinate system for a given triangle, as shown in EigWe define the local
coordinates agy = —E"x andn = w'x. Within a triangle the concentration (1) varies
exponentially in theE direction and linearly (pure diffusion) in the direction. The
coefficientsa, b,cin (1) are linear functions of the node variabiem;, n, obtained by
solving the linear equation systemix;) = n;, | =i, j,k. An interpolation function of
the form (1) has already been used by Baliga and Patankareca@ugled scheme [5].
Analytical solutions of the two-dimensional continuityuedion were also reported in
[6]. Inthat work shape functions with four free parameteesavsought, and rotationally
variant terms were retained.

From (1) the current density vector is readily derived@g = gii[(a+bw'x)E + bw].
The current density is constant in tBedirection and varies linearly in the direction.
To construct a box discretization scheme we consider tlesattion of the Voronoi
box for nodei with the trianglei, j,k (Fig. 2). One needs to determine the normal
currentdjy andlj, through the boundary patch@M andMQy, respectively. Because
of current conservation the current slire: lj + I is independent of the position of the
circumcenteM and can directly be obtained by integrating the normal camepoof

J(x) along the lineQ;Q«. The resultid; = (qf1/2) [(a+bni)(nk— n;j) + b(W— ;)]




SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES Vol. 12 319
Edited by T. Grasser and S. Selberherr - September 2007

wheren; = (2ni + nj + nk)/4 is then coordinate of the midpoint betwe&®; and
Q. The coefficientsa andb and hencd; are linear functions of the node variables
ni,nj,nk. The current can be written ds= qfi(ciini + Cijn;j + CikNk), where the off-
diagonal coefficients are of the form

) = 10— 1) (1)) () + (W) (- )} @)

k() = %{[Ui('ﬂ—ﬂj)—uj(fﬂ—ni)](Uk—ﬂj)+(ui—uj)(lﬂk—lﬂj)} 3)

Here,u=e¥/Y7 andA = ui(nk — nj) +u;j(ni — nk) + U(n; — ni) is a determinant. Note
that the transverse coordinates are linear functions afitle potentials, which can be
written in matrix notation ag = Hy, whereH is a constant element-dependent matrix,
andn = (ni,nj,nk)T, Y= (LIJi,LIJJ',l,Uk)T. Other off-diagonal coefficients related to the
element under consideration are obtained from (2) and (8yblc permutation of the
indices,i — j, ] — k, k—i. Since the box method gives a conservative discretization
scheme, the coefficient matrix exhibits vanishing colummsgi; + cji 4+ ¢ = 0.

3 Discussion and Results

To discuss some properties of the coefficients (2) and (3)hveege a right angle tri-
angle G = 1/2 in Fig. 2) and vary the field direction. The element field veds
represented a& = E(cosg,sing)". Fig. 3 shows that the coefficients associated with
the hypotenuse oscillate around a mean of zero. While fostéredard box method the
coefficientscij andc;; vanish exactly forf = 11/2, with the exponentially fitted box
method only the angular average of these coefficients vaAisliscretization scheme,
however, requires the M-matrix property. Sufficient coiis are the vanishing col-
umn sum discussed above, and the non-negativity of the totgbling coefficients.
Since the total coefficierd; is the sum of the coefficients of the two elements sharing
the edgsd, j, one of the two coefficients can be negative as long as the saomins
positive. If the sum is negative, one has to stabilize therditzation. For this purpose,
a remarkable property of (2) and (3) can be utilized. We nlo&t the coefficients are
linear functions of the coordinatg. If one now changes this coordinate within the
limits of the triangle, the current density will change®th), and the curreri and the
related coefficients b(h?). Therefore, consistent with th@(h) discretization one
can deliberately change thg to some other coordinatg*. It can be shown that the
equationcij(n;*) = 0 has a solutiom;" € [n;, ni], which lies inside the element. For the
right angle triangle under consideration, the complemgmaefficient (3) evaluated at
n;* turns into the well-known Scharfetter-Gummel coefficient.

ey k=N U=\ _ dic (‘-/-’k—‘-/-’i>
() 2(— ) ® < Ur ) 20k 5 Ur )
This property shows the way how two coefficients associatiédl tive edge pair of a
certain node can simultaneously be made non-negative: @dj@ime one is set to zero
and the value of the complementary one is determined from (4)
The new discretization scheme has been implemented in MOBNNT [7]. A fully-
coupled Newton iteration is employed. The presented digaten and the one-dimen-
sional SG method are compared for a pn-diode, shown in Fighé. diagonal edges
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Figure 3: Coefficients as a function of the
field direction for the hypotenuse of a right
angle triangle with aspect ratiy/dg = 1
and a maximum edge voltage Bl = 2Ur.

coefficients (1)
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are either orthogonal (Mesh 1) or parallel (Mesh 2) to theaye current direction.
The current obtained from the SG discretization is indepahdf the orientation of
the diagonal edges. Fig. 5 shows the differences of the misrflom the exponentially
fitted box method with respect to the SG current. The diffeeeis pronounced for a
coarse grid and vanishes for sufficiently fine grids. Theiapploltage is V.
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Figure 4: Pn-diode with square elements split infeigure 5: Relative difference
triangles. Left panel: Mesh1, right panel: Mesh2. with respect to the SG current.
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