SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES Vol. 12 257
Edited by T. Grasser and S. Selberherr - September 2007

Discontinuous Galerkin Solver for the Semiconductor
Boltzmann Equation

Yingda Cheng!, Irene M. Gamba?, Armando Majorana® and Chi-Wang Shu!

IDivision of Applied Mathematics, Brown University, Providence, RT 02912, USA
{ycheng|shu} @dam.brown.edu

2Department of Mathematics and TICAM, The University of Texas at Austin, USA
gamba@math.utexas.edu

3Dipal“[imento di Matematica e Informatica, Universita di Catania, Italy
majorana@dmi.unict.it

Abstract

We present preliminary results of a discontinuous Galerkin scheme applied to determi-
nistic computations of the transients for the Boltzmann-Poisson system describing elec-
tron transport in semiconductor devices. The collisional term models optical-phonon
interactions which become dominant under strong energetic conditions corresponding
to nanoscale active regions under applied bias. The proposed numerical technique, that
is a finite element method which uses discontinuous piecewise polynomials as basis
functions, is applied for investigating the carrier transport in bulk silicon and in a si-
licon nt —n—n" diode. Additionally, the obtained results are compared to those of a
high order WENO scheme solver.

1 Basic Equations

In modern highly integrated devices, a consistent description of the dynamics of carriers
is essential for a deeper understanding of the observed transport properties. For this
purpose the semi-classical Boltzmann-Poisson system is used and given by

U Ve Vaf ~ LBV f = 0(1), Valer(0)E] =

t h n

which provides a general theoretical framework for modeling electron transport. Time-
dependent solutions of the Boltzmann-Poisson system contain all the information on
the evolution of the carrier distribution. In Eq. (1), f represents the electron probability
density function (pdf) in phase space k at the physical location x and time 7. E is
the electric field and € is the energy-band function. Physical constants 7 and g are
the Planck constant divided by 27 and the positive electric charge, respectively. The
parameter & is the dielectric constant in a vacuum, &,(x) labels the relative dielectric
function depending on the material, p(#,x) is the electron density, and Np(x) is the
doping. The collision operator Q( f) describes electron-phonon interactions where most

731 [p(#,x) — Np(x)], (1)
0
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important ones in Si are due to scattering with lattice vibrations of the crystal, which
are modeled by acoustic and optical non-polar modes with a single frequency w,, i.e.

o(f)(t,x,k) = /11% [S(K.K)f(1,x,k") — S(k,K') f(1,x,K)] dK’, )
where the kernel S is defined by
S(k.k) = Ko(kK)S(e(k') —e(k)) +K(k k)
[(ng+1)8(e(K') — &(k) + haw,) +ng 8 (e(K') — (k) —hawy)] . (3)
The phonon occupation factor is ng = [exp (,fBiTIZ) — 1] where kg is the Boltzmann

constant and 7p = 300°K is the constant lattice temperature. The symbol § indicates
the usual Dirac distribution.

2 Numerical Method

Very recently, deterministic solvers to the Boltzmann-Poisson system (1)-(2)-(3) for
two-dimensional devices were proposed [1, 2, 3, 6, 7]. These methods provide ac-
curate results which, in general, agree well with those obtained from Monte Carlo
(DSMC) simulations, often at a fractional computational time. These methods can re-
solve transient details for the pdf, which are difficult to compute with DSMC simulators.
The methods proposed in [1, 2] used weighted essentially non-oscillatory (WENO) fi-
nite difference scheme to solve the Boltzmann-Poisson system. The advantage of the
WENO scheme is that it is relatively simple to code and very stable even on coarse
meshes for solutions containing sharp gradient regions. A disadvantage of the WENO
finite difference method is that it requires smooth meshes to achieve high order accu-
racy, hence it is not very flexible for adaptive meshes. We propose here a discontinuous
Galerkin (DG) method for solving the Boltzmann-Poisson system. The DG method is
a finite element method using discontinuous piecewise polynomial basis functions and
relies on an adequate choice of numerical fluxes, which handle effectively the interac-
tions across element boundaries. See for example the review paper [5] and references
therein. Recent development of the locally discontinuous Galerkin methodology allows
us to adopt a unified discretization strategy to handle all spatial derivatives in semicon-
ductor device models including the Boltzmann-Poisson system [4, 8, 9, 10], with an L?
stable and locally conservative scheme having the potential for full 4#-p adaptivity.

3 Transformed equations and computational results

The transport equation (1) is written in energy based coordinates that can handle the
singular energy masses in the scattering terms [11]. In fact, we perform a coordinate
transformation for k according to

k = %\/W(H—kgﬂaw)(,u,\/l—,uzcos(p,\/l—uzsin(p), 4

where the new independent variables are the dimensionless energy w, the cosine of the
polar angle u, and the azimuth angle ¢. The physical parameter ¢ is related to the
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crystal conduction band. The new unknown charge distribution is
¢(t7x7y7 Z? W? l"’? ¢) = s(w)f(t7x7y7 Z? W? u’ ¢) )

where s(w) = /w(1 + cew) (1 + 204w) is related to the density of the states, and f
corresponds to f in the new variables. The corresponding transformed dimensionless
Boltzmann equation remains in conservative form [1]. We point out that the correspond-
ing free streaming operator depends on the electric field E. In particular, the numerical
fluxes for the DG approximation should be taken carefully in an upwind fashion. For
other details and physical constants we refer to [1, 2]. The transient behavior for a
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Figure 1: Mean velocity (cm/s) and mean energy (eV) versus time (ps).

simple bulk device with a constant electric field (30KV /cm) is shown in Fig. 1, where
the numerical DG and WENO solutions are compared. For the one dimensional silicon
nt —n—n" diode, where the doping Np(x) = 5 x 10*m =3 in the n* region [0, 0.3]
and [0.7, 1] (unit: micron) and Np(x) = 2 x 10>'m~3 in the channel [0.3, 0.7], the sim-
ulation result at the steady state (+ = Sps) is shown in Fig. 2, where the numerical DG
and WENO solutions are compared. The applied voltage is 1V. In all the simulations
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Figure 2: Mean velocity (cm/s) and mean energy (eV) at the steady state ¢t = Sps.

we use 120 x 60 x 24 cells in the x-w-u space. Figure 3 shows the pdf at the location
x = 0.5 micron in the computational stationary state, both in the scaled energy-polar
and cartesian coordinates in the velocity space.
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Figure 3: pdf in the stationary regime at the center of the device. Left: the scaled pdf
® in the (w,u) coordinates; right: the pdf f in the (k, 4 /k% + k%) coordinates.
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