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Abstract

We present the TIBERCAD multiscale device simulation software. The scope of the
project is a full description of charge transport and optoelectronic properties of devices
with embedded active regions of nanometer-scale. We show simulations of a GaN LED
that requires modeling of strain, transport of electrons, holes and excitons and device
heating.

1 The TIBERCAD Device Simulator

The TIBERCAD project is aimed at the implementation of a device simulator which
captures the most important physical concepts encountered in present and emerging
electronic and opto-electronic devices. On the one hand the down-scaling of device di-
mensions requires the inclusion of more advanced quantum mechanical concepts which
go beyond classical transport theories. On the other hand, functionality of new emerg-
ing devices is based both on electrons/holes, and other quasi-particles such as excitons,
polaritons, etc. Usually the active part of a device which needs a more elaborate and
careful treatment is small compared to the overall simulation domain. The computa-
tional cost of the more accurate model however forbids its application to the whole do-
main. In order to solve these problems, a multiscale simulation software is needed [1].

2 Implemented Physical Models

The different physical models implemented in TIBERCAD are described in the follow-
ing sections. All models are currently implemented for the stationary case only. The
discretization of the governing equations is done using the finite element method [2].
The different physical models need not be simulated all in the same space domain but
can be restricted to the domain of interest.

2.1 Strain

TIBERCAD implements a structural model that allows to calculate strain and shape de-
formation of lattice mismatched heterostructures. It is based on linear elasticity theory
of solids that assumes a pseudomorphic interface between different materials [3]. Ex-
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ternal mechanical forces can be included in the simulation. As a result we obtain the
strain map, the shape of the deformed structure and the piezoelectric polarization.

2.2 Quantum-mechanical Models

Quantum-mechanical models are needed to calculate the eigenstates of confined parti-
cles. The models implemented in TIBERCAD are based on the envelope function approx-
imation including single-band and multiband k �p approaches. A stationary Schrödinger
equation is solved to obtain the energy spectrum, particle density and the probabilities
of optical transitions [4]. The quantum-mechanical models are also used to calculate
the valence and conduction band parameters in presence of strain.

2.3 Semi-classical Transport

Transport of quasi-particles is modeled based on semi-classical theory. The particle
flux is assumed to be equal to the gradient of a driving potential multiplied by a par-
ticle conductivity j = −σ∇φ . In the case of electrons and holes the driving poten-
tial is the respective electro-chemical potential and the conductivity equals µnn and
µp p, respectively, where µn, µp and n, p are the mobilities and the particle densities.
This model is connected to the drift-diffusion approximation by means of the Einstein-
relation D = kBT/e, where D is the diffusivity. In nonisothermal simulations the See-
beck effect is included by writing the particle flux as j = −σ∇(φ + P∇T ), where P is
the absolut thermoelectric power [5].

2.4 Thermal Transport

Modeling of thermal transport is based on a thermodynamic model [5]. Self-heating
due to Joule and Thomson-Peltier effect and generation/recombination phenomena is
considered. The thermal conductivity is assumed to be temperature dependent which
leads to a nonlinear equation for the heat diffusion.

2.5 Atomistic Modeling

Small, but important regions of a device can be described atomistically based on em-
pirical and semiempirical models, including structural, electronic and thermal proper-
ties [6]. The models are based on tight-binding and density functional theory and will
be extended to Green’s functions theory for atomistic description of transport.

3 Simulation Examples

As first example we present simulation results of a GaN pin-diode with embedded
In0.05Ga0.95N QW. Such a structure is proposed as a realization of a polariton laser [7].
The computational cost is reduced by one half exploiting the device symmetry with
respect to the x-coordinate. The heat transport is solved over a 0.5mm× 0.8mm size
region that includes the GaN substrate, the heterostructure and the air around the de-
vice, whereas the particle transport simulation is limited to a part of the device of
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0.5µm×0.2mm size, where current flow is expected. In Fig. 1 we show the temperature
map at a bias voltage of 3.4 V, which corresponds to a current of approximately 1 A/cm.
A temperature increase of about 5 K can be observed at the center of the device. Fig. 2
presents the exciton density in the InGaN well and several streamlines of the electrical
current.
As second example we show simulation results for an AlGaN/GaN nanocolumn pin-
diode of 20 nm lateral size and 200 nm height under forward bias of 4.5 V (fig. 3).
In such structures one observes current confinement due to inhomogeneous strain and
related piezoelectric effect.
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Figure 1: Temperature map at a bias voltage of 3.4 V.
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Figure 2: Streamlines of electrical current and exciton density at a bias voltage of 3.4 V.
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Figure 3: In-plane components of the electron current density inside the intrinsic GaN
region of an AlGaN/GaN nanocolumn pin-diode over two perpendicular cutplanes.

Acknowledgements

We acknolwdge the EU FET-Open Program, Stimscat FP6-517769, for financial sup-
port.

References

[1] TiberCAD simulation package, http://www.tibercad.org.
[2] B. S. Kirk and J. W. Peterson, libMesh library, http://libmesh.sourceforge.org.
[3] M. Povolotskyi and A. D. Carlo, “Elasticity theory of pseudomorphic heterostructures grown

on substratesof arbitrary thickness,” J. Appl. Phys. 100, 063514 (2006).
[4] S. L. Chuang, Physics of optoelectronic devices, Wiley Series in Pure and Applied Optics

1st edition (1995).
[5] G. K. Wachutka, “Rigorous Thermodynamic Treatment of Heat Generation and Conduction

in Semiconductor Device Modeling,” IEEE Transactions on Computer-Aided Design 11,
1141 (1990).

[6] A. Di Carlo, Introducing Molecular Electronics, Springer, Heidelberg (2005).
[7] G. Malpuech et al., “Room-temperature polariton lasers based on GaN microcavities,” Appl.

Phys. Lett 81, 412 (2002).

248 SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES Vol. 12
Edited by T. Grasser and S. Selberherr - September 2007




