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Abstract

We present a microscopic model of the photocurrent in quantum well solar cells (QWSC),
based on the non-equilibrium Green’s function formalism (NEGF) for a multiband
tight-binding Hamiltonian. The quantum kinetic equationsare self-consistently cou-
pled to Poisson’s equation. Relaxation and broadening mechanisms are considered by
the inclusion of acoustic and optical electron-phonon interaction in a self-consistent
Born approximation of the scattering self energies. Results are shown for the density
of states, spectral response, current spectrum and IV-characteristics of single quantum
well pin-structures.

1 Introduction

Since the pioneering work of Barnham and co-workers [1], thepotential efficiency en-
hancement by the introduction of quantum wells in the intrinsic region of apin solar cell
has attracted considerable interest both from the photovoltaic community and within a
broad spectrum of fundamental research [2].
A consistent description of the optical and transport processes in QWSC (Fig.1) requires
the combination of a microscopic material model with a formalism for non-equilibrium
quantum transport in interacting systems. The NEGF formalism together with a tight-
binding or Wannier basis matches these requirements and hasbeen successfully applied
to similar systems like quantum cascade lasers [3], infrared photodetectors [4] or reso-
nant tunneling in layered semiconductor heterostructures[5].

p i n

electrons

holes
z

E

Vbias
µL

µR
1

2 3
4

5
6

Figure 1: Characterizing structure and
processes of apin-QWSC.

Generation and recombination
    1. Photogeneration of electron-hole pairs
    2. Radiative recombination
    3. Nonradiative recombination

          Transport

    1. Resonant and nonresonant tunneling
    2. Thermal escape and sweep-out
    3. Relaxation by inelastic scattering

SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES Vol. 12
Edited by T. Grasser and S. Selberherr - September 2007

237



2 Model

The QWSC system is described by the total Hamiltonian

H = H0 + Hint , Hint = Hep + Heγ + Hother, (1)

whereH0 contains the kinetic energy, band structure effects and theHartree potential,
Hep and Heγ stand for the interaction of carriers with phonons and photons, respec-
tively, andHother contains further types of elastic scattering (from interface roughness,
ionized dopants, alloy composition inhomogeneities, etc.), inter-carrier scattering and
nonradiative recombination terms, which will not be discussed in the present work. The
Hamiltonians of the extended contact regions are absorbed into respective boundary self
energiesΣB reflecting the openness of the system. Interactions such as carrier-phonon
and carrier-photon scattering are included perturbatively in terms of interaction self en-
ergiesΣ on the level of a self-consistent Born approximation. For polar-optical phonons,
which are the main relaxation mechanism, the standard Fröhlich Hamiltonian is used,
and the acoustic phonons are modelled by the deformation potential approach. The cou-
pling to photons is described within the dipole approximation and for monochromatic
illumination. For both phonons and photons, an equilibriumdistribution is assumed.
Carrier-carrier interactions are considered by solving the macroscopic Poisson’s equa-
tion for the electrostatic potential with the carrier densities from the Green’s functions
and a given doping profile, which corresponds to a Hartree level approximation.
The real time non-equilibrium Green’s functionsGα ,L;α ′,L′(k; t,t ′), with L,α indicat-
ing layer and atomic orbital andk the transverse momentum, are defined as the non-
equilibrium ensemble averages of the corresponding single-particle operators [6, 7].
In steady state, it is possible and more convenient to work with the Fourier transform
G<

α ,L;α ′,L′(k;E).
Within the NEGF formalism, the steady state equations of motion for the Green’s func-
tion are given (in matrix notation) by the Dyson equations

GR =
[

(

GR
0
)−1

−ΣR −ΣRB
]−1

, GR
0 = [(E + iη)1−H0]

−1 , (2)

G< = GR (

Σ< + Σ<B)

GA, GA = (GR)†, G> = G< + GR −GA. (3)

Together with the self-energies from boundaries and interactions, they form a closed set
of equations for the Green’s functions that has to be solved self-consistently. For the
solution of Eqs. 2 and 3, a recursive algorithm is used.
Once the Green’s functions are known, macroscopic quantities can be derived, such
as carrier and current densities at a given layerL, which for a nearest-layer coupling
tight-binding model are given by

n(p)L =
∓2i
A∆ ∑

k

∫

dE
2π

tr{G<(>)
L;L (k;E)}, (4)

Jn(p)
L =

2e
h̄A ∑

k

∫

dE
2π

tr{tL;L+1G<(>)
L+1;L(k;E)−G<(>)

L;L+1(k;E)tL+1;L}, (5)

whereA is the cross sectional area, and the trace is over orbital indices.
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3 Results

The results shown in the following were obtained using a two band nearest-layer cou-
pling tight binding model for aAlxGa1−xAs typepin-diode with quantum wells ofGaAs
embedded in the intrinsic region. The tight-binding Hamiltonian yields the band struc-
ture in transport direction (z), whereas for the transverseband structure a parabolic and
isotropic approximation is used. To reduce the computational burden, short structures
with low band gaps, but comparable built-in fields were investigated.

3.1 Local density of states

The local density of states (LDOS) at layerL is given by

ρL(E) = ∑
k

tr{AL;L(k;E)}, A = i(GR −GA), (6)

whereA is the spectral function. Fig.2 (left) displays the LDOS fora 25 monolayer
(ML) single-quantum well structure with 60 ML highly doped (Nd,a = ±1018cm−3)
contacts and intrinsic spacers of 55 ML. The two gap energiesareEg,low = 0.5 eV and
Eg,high = 1 eV , respectively, with a valence band offset of 0.2 eV . The transverse mo-
mentum integration is restricted to the relevant range at a given Fermi level. There are
two confinement levels both in the conduction an the valence band. The level broad-
ening is determined by the quantum well depth and the effective mass. In the valence
band, inelastic electron-phonon scattering leads tho the formation of satellite peaks.
Above the wells, additional structures from quasi-bound states and transmission reso-
nances appear.
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Figure 2: Local density of states (left), optical transitions (center) and spectral response
for a 25 ML SQW device.

3.2 Optical transitions, photocurrent and spectral response

The relevant optical transitions and the corresponding spectral response or external
quantum efficiency, defined as the short-circuit current normalized by the incoming
photon flux, are shown in Fig.2 center and right, respectively. The contribution of
lower-level transitions is suppressed due to the reduced escape rate (high barriers for
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tunneling/thermoionic emission). The dominant contribution is due to the transitions
between lower and higher levels, whereas contributions from higher transitions are re-
duced in magnitude due to lower occupation.

3.3 Current spectrum and IV-characteristics

The following results were obtained for the same structure with Eg,high = 0.85 eV and
a valence band offset of 0.15eV .
The current spectrum displayed in Fig.3 (left) shows the energy resolved contributions
from photocurrent (positive) and dark current (negative for forward bias) to the total
current. The photocurrent spectrum reflects the joint density of states of the domi-
nant transition. The dark current spectrum shows the effects of relaxation by inelastic
phonon scattering in terms of broadening towards lower energies.
Electron and hole currents grow within the illuminated region towards the respective
contacts. The overall current is conserved, which is verified in Fig.3 (center).
The total current at the left interface to the interacting region is displayed in Fig.3 (right)
as a function of the applied (forward) bias.
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Figure 3: Current spectrum (left), current conservation (center) and IV-characteristics.

4 Conclusions

The non-equilibrium Green’s function formalism applied toQWSC allows for a com-
prehensive study of the microscopic processes involved in the generation and transport
of carriers under non-equilibrium conditions.
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