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Abstract 

As device sizes shrink towards the nanoscale, CMOS development investigates 
alternative structures and devices. Existing CMOS devices will evolve from planar to 
3D non-planar devices at nanometer sizes. These devices will operate under strong 
confinement and strain, regimes where atomistic effects are important. This work 
investigates atomistic effects in the transport properties of nanowire devices by using 
a nearest-neighbor tight binding model (sp3s*d5-SO) for electronic structure 
calculation, coupled to a 2D Poisson solver for electrostatics.  This approach will be 
deployed on nanoHUB.org as an enhancement of the existing Bandstructure Lab.

1   Introduction-Approach 

The 2D cross section of a 3D device is described with an arbitrary geometrical shape 
such as rectangular, cylindrical and tri-gate/FinFET type of structures (Fig. 1(a-d)). A 
finite element mesh enables the treatment of extended device components and 
includes the atomic locations in the interior semiconductor. The electronic structure in 
a nanowire channel is described in an atomistic representation using a 20 orbital 
nearest-neighbor tight binding model (sp3s*d5-SO) [1]. A nanowire with a given cross 
section and transport orientation is specified, and its corresponding bandstructure is 
calculated using the unit cell information, based on the underlying atomic lattice (Fig. 
1e). To account for any changes to the bandstructure due to potential and charge 
variations in the wire, the electronic structure is calculated self-consistently with a 
Poisson solution for the electrostatic potential in the cross section. Upon potential 
convergence of the infinite wire, the ballistic transport characteristics are calculated 
with a semi-classical ballistic model (Fig. 1f) [2]. 

2   Results - Discussion 

Figure 2 shows the self consistent results for the charge distribution in a 3nm x 3nm 
square, [100] transport direction, Si nanowire, under low and high gate bias 
conditions, i.e. when the channel is partially and fully inverted. The underlying 
structure of the atoms is evident in the case where the channel is fully inverted (dots). 
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Figure 1:  The 2D cross sections of the devices treated. The finite element 
mesh and the atomic positions (dots) are indicated. (a) Rectangular, (b) 
Cylindrical, (c) The tri-gate device structure, (d) The mesh for the tri-gate 
structure. (e) The zincblende lattice configuration used for the atomistic 
description of the device. (f) The semi-classical ballistic model used to 
calculate device characteristics.  

Figure 2:  Device features for a 3nm rectangular wire. (a-b) The 2D cross 
section showing the charge distribution under low and high gate biases, 
respectively. The dots indicate the underlying atomic positions. (c-d) E(k) 
plots for the cases (a-b). Efs is the source Fermi level. 

A nanowire dispersion curve is usually considered to be a material and geometry 
dependent quantity, independent of the filling of the states. The difference between 
Fig. 2c-d, however, indicates that the dispersion in Fig. 2d is not a solid shift in 
energy from Fig. 2c. The first set of excited states shifts below the bandedge minima 
at k=0.45. The filling of the states in the device changes the electrostatic potential, 
which in turn changes the lateral confinement. The change in the lateral confinement 
in turn changes the dispersion in the transport direction. Larger nanowires show 
another interesting behavior under inversion conditions. With increasing gate biases 
the charge shifts from being confined in the center of the wire to be confined in the 
corners of the wire. The electrostatics of the device force these corner regions into 
stronger inversion (Fig. 3a,b). Figures 3c-d also shows significant changes in the 
bandstructure of the nanowire between the low and high bias conditions cases.  
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Figure 3:  Device features for a 6nm rectangular wire. (a-b) The 2D cross 
section showing the charge distribution under low and high gate biases, 
respectively. The dots indicate the underlying atomic positions. (c-d) The 
corresponding E(k) plots for the cases (a-b). Efs is the source Fermi level. 

Figure 4:  The ID-VG characteristics calculated using the empty (non-SC) 
E(k) diagram and using the charge filled (SC) E(k) diagram for the 3nm and 
6nm rectangular nanowires. (a)  The 3nm device. (b) The 6nm device.   

Changes in the bandstructure and spatial distribution of charges reflect on the I-V 
device characteristics. Figure 4 shows a comparison between the ID-VG characteristics 
of the device for two simulation approaches: (i) the Poisson equation is solved in the 
cross section of the rectangular nanowire and the potential variation is considered in 
the bandstructure calculation, and (ii) a simple planar capacitance (oxide capacitance) 
is considered for the electrostatics of the device (no potential variation is considered 
in the cross section). The spatial variation of the charge, however, (i.e. volume 
inversion for small wires) makes the simple capacitance assumption inaccurate. This, 
together with the variation of the E(k) levels through self-consistency (larger wires), 
result in significant differences in the ID-VG characteristics obtained by the two 
methods, for both, small 3nm diameter (Fig. 4a), and larger, 6nm diameter (Fig.4b) 
wires. Considering only a simple shift of the bands due to the gate bias will result in 
overestimating the drive current of the device. This observation can be different for 
different device shapes and sizes however. It is noted here that in all the calculations 
the potential variations between the atomic locations in the wire are small compared 
to the tight-binding parameters used, so the tight-binding approximation is still valid. 
The Poisson solution on a 3D zincblende lattice poses an interesting challenge for 
typical regular mesh solvers, zincblende is not a space-filling mesh.  The lattice can 
be symmetrised and solved in standard finite difference methods in 3D (Fig. 5a). The 
2D solution corresponds in a 3D representation to Fig. 5b indicating that the 2D 
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approximation spreads out charge in real space significantly different than the original 
zincblende lattice. The differences in the I-V characteristics between the two methods 
for this particular case can be up to 10%. However, the 3-D solution is 
computationally much more expensive than the 2D solution (Fig. 5c). Depending on 
the discretization of the mesh and the k-space resolution in the bandstructure 
calculation, the Poisson solution in 3D can account for a large part of the total 
computation time for little difference in the results, so we typically utilize the 2D 
Poisson solution. 

Figure 5:  (a) The position of the atoms in the zincblende lattice. (b) 3D 
mesh nodes for the equivalent 2D Poisson. (c) Time comparison between a 
full 3-D atomistic lattice and a quasi 2-D solution. (d) ID-VG characteristics 
computed for quasi 2-D and full 3-D Poisson solution.

3   Conclusions 

A tight binding approach is used to calculate the electronic structure of nanowire 
devices self consistently with a 2D Poisson equation. Using a semi-classical ballistic 
model, the transport characteristics are then evaluated. Atomistic effects and an 
accurate description of the electronic structure are important features and need to be 
taken into consideration when computing transport characteristics of nanoscale 
devices. A 2D Poisson solution is found to be sufficient compared to a full 3D 
Poisson solution for infinite wires.  The solution methods are fast enough to rapidly 
explore device configurations.  This work will enhance to the Bandstructure Lab tool 
[3] that is already freely accessible on nanoHUB.org. 
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