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Abstract 
 

A robust algorithm to get the chemical potential of the particle reservoirs for the self 
consistent full 2D Schrödinger-Poisson solver is proposed. Using this algorithm we 
study the effect of junction depth on ballistic current. Simulation results show that 
shallow junctions come with much better on to off current ratio while it keeps the on-
state transconductance at the same level as the deeper junction device.               

1 Introduction 

An efficient 2D Schrödinger-Poisson solver for modern MOS transistors becomes 
inevitable. When open boundary conditions are imposed, only a limited number of 
methods can be used. Among these methods, the subband decomposition method [1] 
or quantum transmitting boundary method [2] come with great advantages. In this 
method, the reservoir picture is used to calculate carrier injection from source and 
drain. In order to model also the accumulation in the lightly doped drain (LDD) 
regions for a transistor in the on-state, the transistor area covered by the simulation 
should at least partially include the source and drain regions. In this light the chemical 
potential in source and drain should be properly calculated. This calculation is crucial 
to correctly impose the Dirichlet boundary condition of the Poisson equation and to 
calculate ballistic current and carrier distribution. 
    

2 Algorithm 

 In each iteration, the chemical potential of a reservoir is calculated by assuming a 1D 
potential profile at the edge of the active area which can only be justified when we 
extend the active area far enough from the gated region. Fig. 1 shows such a wide 
active area and the coordinate axes used in the equations.  For the region with a 1D 
potential profile the integral of the charge density in the confinement direction should 
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be zero due to zero electric field in bulk and Gauss’ law. This yields the equation to 
get the chemical potential at each junction. 
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Eq. (1) is the Poisson equation at the edge of active area, xP0, where it is connected to 
reservoir . Being derived from classical Fermi-Dirac statistics, the hole 
concentration 

0P
( 00 ,, PP zxp )μ  merely depends on the chemical potential of reservoir . 

The electron concentration 
0P

( )100 ,,, PPP zxn μμ  contains a contribution to the carrier 
distribution at xP0 due to injection from reservoir 1P . As a result the electron 
distribution depends on the chemical potentials 0Pμ  and 1Pμ of both reservoirs, which 
may be obtained form Eqs. (2a,b). Considering the injection from both reservoirs and 
all possible confinement modes and plane waves, we use Fermi-Dirac statistics to 
statistically average the quantum mechanical density operator as mentioned in Eq.(3).  
This gives the quantum mechanical electron distribution for any x and z.  The labels 
P ,  and  respectively denote the reservoir index, the mode index and the plane 
wave number in the channel direction. Fixing x at x

0i xk
P0 we can calculate 

( )100 ,,, PPP zxn μμ  in (2). 
We have compared our method with two other methods that evaluate the electron 
distributions across the junction: the classical method and a semi classical one, relying 
on Boltzmann statistics but pinching off the electron density at the oxide interface. 
This comparison shows that the difference between the chemical potentials is in the 
order of kT. This is due to the shallow junction of the short device for which quantum 
effects can not be neglected. 
In order to achieve fast and efficient convergence, we invoke a filter for the 2D 
potential during the above calculation for chemical potential. The main reason for this 
is to prevent artificial carrier fluctuations in the heavily doped region. To reach this 
goal, we designed the filter to yield relatively flat and 1D-like potential profiles in the 
outer half of the source and drain regions. By gradually removing this filter during 
iterations we obtain a realistic potential profile with 1D behavior at the edge of source 
and drain as was originally assumed. The only remaining question concerns the 
choice of a proper width for the active area. It shouldn’t be too wide due to run time 
restrictions and on other hand it should be wide enough to reach 1D behavior at edge 
of the active area.  
Fig. 2 shows the overall algorithm. Using the potential profile of a previous iteration, 
we solve the 2D Schrödinger equation for all possible excitations to obtain 
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( )100 , PPF μμ and  ( 101 , PPF )μμ  in Eqs. (2a,b).  Solving the latter, we get the chemical 
potential of the junctions. Next, we solve the 2D Schrödinger equation again, but this 
time we use the chemical potentials calculated in the previous step to obtain the 
electron density through Eq.(3), yielding excellent and smooth convergence. Fig. 3 
shows a typical electron distribution for the doping profile shown in Fig.4. 
 
 
 
 

 
                                                                          

Figure 1:  Simulation area with edges 
xP0 and xP1. 

Figure 2:  Flowchart of the 
algorithm  

 
 

3 Simulation Results  

We have simulated a traditional n-channel Si device with an electrical gate length of 
10.2 nm. The gate length is 15 nm, but we account for a 2.4 nm overlap between the 
LDD and gated region. The doping profile in the LDD region is taken to be a 2D 
elliptical Gaussian profile with a base line of 5E19 cm-3. The channel doping is 
3.5E18 cm-3 and the oxide thickness is 1 nm. The junction depth is scanned from 6nm 
to 9nm. The ballistic current is calculated by statistical averaging of current density 
operator: 
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Figs. 5 and 6 show that a reduction of the junction depth causes a lower on current 
and a much lower off current. A reduction of 1nm in junction depth suppresses the off 
current approximately by one order of magnitude. Fig. 5 shows that the 
transconductance is preserved down to7nm junction depth.  
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Figure 3: Electron density for Vgs = 
0.4V ans Vds=0V 

Figure 4: Doping concentration profile 
of simulated structure. 
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Figure 5: Ids and gm vs. Vgs for 
different junction depth, Vds = 0.04 V.

Figure 6: off current for different 
junction depth. Vgs is set to be zero.  

 
 
4   Conclusion 
 
A robust algorithm is presented for a 2D Schrödinger-Poisson solver with open 
boundary conditions and accounting for the junctions. It is shown that shallow 
junctions yield better on to off current ratio preserving the transconductance. 
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