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Abstract

The Pauli principle, which limits the occupancy of a single state to one electron, is
included in a deterministic solver for the Langevin-Boltzmann equation (LBE) based
on a spherical harmonics expansion. The Newton-Raphson scheme for solving the non-
linear BE converges within a few steps and the increase in CPU time is less than a
factor of ten. Even in the case of an extremely degenerate electron gas no numerical
problems occur. The approach works well for transport and noise, and the Nyquist
theorem is satisfied with high numerical precision at equilibrium. For electrons in bulk
silicon a non-negligible impact of the Pauli principle is found only at very high electron
densities.

1 Introduction

The Pauli Principle limits the occupancy of a state to a single electron per spin direc-
tion [1]. It has a strong impact on transport at high electron densities, when the value
of the distribution functionfν(kkk, t) at low energies approaches its maximum of one.
This reduces scattering, because electrons can be scattered only into empty states. This
effect is accounted for in the scattering integral of the BE by multiplying the transition
rate with the probability that the final state is empty: 1− fν(kkk, t). Evaluation of this
factor requires the knowledge of the distribution function at all times during a simula-
tion. In the case of the Monte Carlo method this entails an ensemble simulation [2],
which can be very CPU intensive. This problem does not occur in the case of a solver
based on a spherical harmonics expansion (SHE) of the distribution function [3], be-
cause the distribution function is inherently known at all times [4]. In addition, the
SHE approach has many advantages in the case of noise calculations [5]. Here, a solver
for the Langevin-Boltzmann equation (LBE) including the Pauli principle is presented.

2 Model

The electron model is based on the analytical six valley band structure and phonon scat-
tering mechanisms developed by the Modena group [6]. Impurity scattering is modeled
according to the Brooks-Herring approach [7], where the scattering rate is modified
in a heuristic way such that the experimental mobility is reproduced correctly at high
doping concentrations [8]. The SH expansion is truncated at an order, for which the
truncation error is negligible under bulk conditions (usually the third order). Energy is
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discretized with an equi-distant grid and the spacing is 1meV. Details of the expansion
can be found in Ref. [9]. Due to the Pauli principle the scattering integral of the BE
becomes nonlinear

∂ fν(kkk, t)
∂ t

−
e
h̄

EEET∇∇∇kkk fν(kkk, t) =
Ωs

(2π)3

6

∑
ν ′=1

∫

{

[1− fν(kkk, t)]Wν ,ν ′(kkk|kkk′) fν ′(kkk′, t)

−
[

1− fν ′(kkk′, t)
]

Wν ′,ν(kkk′|kkk) fν(kkk, t)
}

d3k′ . (1)

and the LBE is solved by the Newton-Raphson method. The initial condition is the
equilibrium Fermi-Dirac distribution, which ensures thatthe Pauli factor 1− fν(kkk, t) is
positive. Noise is calculated based on the Langevin approach [10, 11, 5] and fluctuations
of the distribution function in the Pauli factor are automatically included. This is in
contrast to Ref. [4], where those fluctuations were ignored leading to a large error [12].

3 Bulk Results

In order to exemplify the impact of the Pauli principle and totest the robustness of the
numerical approach a rather high electron density of 1021/cm3 is investigated, which
leads to a strongly degenerate electron gas even at room temperature. The Newton-
Raphson scheme nevertheless converges within a few iterations and convergence be-
comes quadratic close to the solution (Fig. 1). Even at an electric field of 100kV/cm
the distribution function is close to a value of one at low energies (Fig. 2) and the Pauli
principle has a strong impact. This is shown for the drift velocity in Fig. 3. At low
electric fields simulations with and without the Pauli principle yield the same velocity,
because the impurity scattering model was calibrated in both cases to reproduce the ex-
perimental low-field mobility. At high electric fields a large difference occurs and for
an electric field of 100kV/cm the drift velocity evaluated including the Pauli principle
is about twice as large as without. An analogous result is obtain for noise. The power
spectral density of the velocity fluctuations is shown for zero frequency in Fig. 4 and
at low electric fields both methods yield the same result. This is due to the Nyquist
theorem, which takes the same form in both cases and since thelow-field mobility is
the same, the noise must be the same. The Nyquist theorem is satisfied with a numer-
ical accuracy of more than four digits. Similar to the case ofthe drift velocity, at high
electric fields large differences occur between simulations with and without the Pauli
principle and the result including the Pauli principle is about three times as large as the
other one at 100kV/cm.
A case, which is not discussed in this paper and where the Pauli principle has a strong
impact, is the one of deep traps. Even in the case of a dilute electron gas in the con-
duction bands, deep traps are often located below the Fermi level. In this case the
Pauli principle has a strong impact on the occupancy of the traps and the corresponding
noise [12].

4 Conclusions

A SHE solver for the LBE including the Pauli principle has been presented. The ap-
proach is numerically robust and converges within a few iterations. This approach might
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also work in the case of devices in contrast to the Monte Carloapproach, which in that
case requires an ensemble device simulation with a prohibitive number of particles due
to the high number of dimensions of the phase space. It has been shown that at least for
very high electron densities the Pauli principle has a non-negligible impact.
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Figure 1: Root mean square error of
the distribution function for an electron
concentration of 1021/cm3 in silicon at
300K.
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Figure 2: Electron distribution func-
tion in the valley with the principle
axis along the electric field, which is in
〈100〉 direction, for silicon at 300K.
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Figure 3: Drift velocity calculated
with the Pauli principle (w PP) and
without (w/o PP) for an electron con-
centration of 1021/cm3 in silicon at
300K.
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Figure 4: Power spectral density of the
velocity fluctuations calculated with
the Pauli principle (w PP) and without
(w/o PP) for an electron concentration
of 1021/cm3 in silicon at 300K.
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