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Abstract- The valence bands of silicon can be expanded
exactly by spherical harmonics only up to the energy, where the
bands reach the surface of the Brillouin zone (BZ). For higher
energies an approximation is required. Therefore an anisotropic
extension of the band structure is presented which is determined
by matching the density of states (DOS) and moments of the
inverse group velocity of the exact full-band (FB) structure. The
Boltzmann equation (BE) based on the exact FB at low energies
and the approximation at high energies is solved by the spherical
harmonic expansion (SHE) method for bulk silicon including
impact ionization. The results are compared to Monte Carlo (MC)
data based on the exact FB structure.

both spaces. This is only possible as long as the mapping is
unique in both directions [1]. In the case of the FB structure
for heavy holes in unstrained Si, this is possible up to 1.27eV
(light holes: 1.31eV, split off: 7.09eV). For higher energies, the
bands are constructed in such a way that, on the one hand, the
dispersion relation k' (E 0, q) of band v depends monotonic
on E for all angles (0, 5), and on the other hand, the moments

(1)

I. INTRODUCTION

In Ref. [1] a SHE of the valence band structure has been
presented. This expansion is only possible as long as the
energy depends in a monotonic way on the wave vector. For
heavy holes in unstrained silicon this is the case up to about
1.27eV limiting the usefulness of this approach. We present
an approximation with which this approach can be extended
to higher energies. In contrast to previous work (e.g., [2]), our
approach is anisotropic and the DOS and the group velocity
are consistent with the band structure, which is a prerequisite
for a stable discretization of the BE in devices [3].

In section 2, the theory for the anisotropic extension of
the valence band is described. The DOS and moments of
the inverse group velocity are matched to those of the exact
FB structure [4]. With the valence bands extended up to high
energies meaningful hot hole simulations are possible, and the
BE is solved at high electric fields by the SHE method for
bulk silicon including impact ionization. The results, which
are shown in section 3, are compared to MC data based on
the exact FB structure [5].

II. THEORY

The SHE of the distribution function on equienergy surfaces
has many advantages over an expansion with respect to the
modulus of the wave vector [3]. The BE is therefore projected
onto SHs for constant energies. This requires the mapping
of the spherical coordinates of the k space (k, 0, ¢b) onto
an energy space (£, 0, r), where the angles are the same in

are reproduced as good as possible. v>'(k) is the group velocity
in k space, n an integer number and the integral is taken
on the equienergy surface £>(k) = E within the first BZ.
With the methods presented in Ref. [5] the moments V,
are calculated by numerical integration over the first BZ of
the FB structure [4]. However for evaluating the integral V,
in spherical coordinates (£, 0, r), k and its derivatives with
respect to energy and angles are required for all (0, r). The
construction for k at high energies is based on a recursive
calculation of kt'(E 0, b) from its value k'( -d ,0, b) at
the energy £-0 , where 6E denotes the energy spacing. The
initial value of k is given by the value at the highest energy for
which the exact FB can be still expanded. The approximative
SHE of k'(£F 0, Q) is obtained by adding a few low order SH
terms to the previous k' ( - ,0, r). In addition, the SHE of
k contains only even harmonics and has a fourfold symmetry
in q due to the symmetry of the band structure [3]. Adding
even SHs up to the fourth order to kt'( -d 0, b) yields

k (£, 0, 0) = k(E(£- , 0, 0) + min kV(E- 6E£ 0~o)

minF'(E, 0, )] (2)

with

r (£, 0, ) = j' (£) Cos 0 + _ (E) COS4 0

+-K (£) sin4 0 cos 4q (3)
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where NYo1,2,3 are fitting parameters. With this ansaltz, obvi-
ously k"(E 0, ) > k(E -6,O, ). It means that without
any restriction for the fitting parameters, the monotonicity
condition of k'(E, 0, b) is automatically fulfilled for all angles
(0, ). The derivatives of k'(E) with respect to (w.r.t) the
angles can be calculated in a straight forward manner. The
derivative of k' w.r.t energy is determined by a left sided
finite difference approximation:

&k(E 0 (4)(EO, k)-"(E- £E 0:
(4)

With (2), (4) and the derivatives of k-'(E) w.r.t angles, V,
can be expressed in terms of the fitting parameters and the
known k1, U" at energy £- E. Matching the V, to the exact
values of the FB structure by the nonlinear least square error
Levenberg-Marquardt method [6], [7] yields the set of tY0 12 3
for energy E. As soon as the fitting parameter set has been
obtained for E, the resultant k (E, 0, b) is used as initial value
for the dispersion relation of the next energy level E + 6E. By
iteration the fitting parameters are obtained for all energies.

To minimize iteration steps for each energy level, the fitting
parameters must be initialized in a proper way. By using small
energy steps, the resultant fitting parameters at energy E can
be used as first guess for the optimization of the next energy
level E + 6E. For the energy level at the beginning of the
whole optimizing process, all fitting parameters are initialized
as zeroes except -y0. With the assumption that the initialized
<)0 (= -o,init) are the same for all bands, 'YO,init can be found
by matching V0 with its exact value.

The described method allows to extend the SHE of the FB to
the high energies required for meaningful hot hole simulations.
The BE is solved with a deterministic SHE method based
on the phonon system described in Ref. [5] and the impact
ionization model of Ref. [8].

III. RESULTS

Up to an energy of 7.09eV the band structure extension
is only required for the heavy (HH) and light hole (LH)
bands, because the relation between energy and wave vector
remains monotonic for the split-off band in this energy range.
For energies below 1.2eV, the exact SHE of the HH and
LH bands is used. The optimizing process is performed for
energies above 1.2eV with an energy step of ImeV. The band
index in definition (1) for moments V, represents HH and
LH bands. Fig. 1 - 5 show that V0 (-DOS) and V1-V5 based
on the approximated band structure fit well the exact FB
data. The fitting parameters as functions of energy are shown
for HH (Fig. 7) and LH band (Fig. 8). It can be seen that
N'o, -Yi, -Y2 :t 0 for both HH and LH bands. This means that
the extension of HH and LH bands is anisotropic. Moreover,
1-Y3 «< 1 Y2 1, | -fti| implies that the contribution of the harmonic
Y4,4 (- sin4 0 cos 4O) to the SHEs of the HH and LH bands
can be neglected.
The hole drift velocity calculated by SHE for different direc-

tions of the electric field is shown together with MC data based
on the exact FB in Fig. 9. Good agreement of both methods

is obtained and the full anisotropy is reproduced by SHE. In
the nonlinear regime, if the applied electric field is rotated
by 450 from (110) to (100) direction, the hole drift velocity
increases significantly. The energy distribution function (e.d.f.)
is plotted in Fig. 10. The SHE results reproduce accurately
the MC results, even for E = 300kV/cm. Fig. 11 shows the
II coefficient versus inverse electric field. Again the deviation
from MC is very small. For E = 200kV/cm, it takes six days
to obtain the II coefficient with 0.5% error by MC, whereas
the CPU time required by SHE is only about eight minutes.

IV. CONCLUSIONS
We have developed for the first time an anisotropic method

to extend the SHE of the valence bands to high energies and
the results agree well with simulations based on the exact FB
structure. Since the expansion is exact below 1.2eV, all the
important magnetotransport and transport effects in confining
fields, which are due to the anisotropic band structure, are
described correctly in contrast to previous approaches, which
were based on an isotropic approximation of the band structure
(e.g., [2]). In addition, our approach avoids the inconsistency
of the group velocity and density of states inherent to those
schemes.
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