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Abstract
A modified density gradient model is derived for the
carrier density inside a large potential barrier from the
Madelung-Bohm fluid theory ofquantum mechanics (QM)
and the WKB approximation. The derived model is used
with simple additional assumptions on the nature of the
inversion layer and dissipationless transport, and shows
an excellent match to experimental tunneling current data.
Though the present derivation is one-dimensional, the
model shows promisefor generalization to 2-D and 3-D.
Introduction

Much effort has been expended towards
developing computationally efficient transport models
that can incorporate quantum effects. Macroscopic
models based on the density gradient method [1] and
the effective potential method [2] are frequently used
for treating static quantum effects, such as inversion
layer quantization and confinement. Of these, the
effective potential method has been shown inadequate
for modeling tunneling transport [3]. Though there is
earlier work [4] that applies the density gradient
method for treating tunneling across the barrier, the
form of the equations themselves are rather unclear,
owing to the fact that the method is derived from a
small perturbation expansion for the Wigner function
in equilibrium which diverges completely in the
presence of a large barrier potential. In this paper, we
remedy this shortcoming and provide a transparent
derivation of a modified density gradient theory that is
explicitly applicable for transport under a large
potential barrier (abrupt or otherwise).

In the first section we discuss the Madelung-
Bohm equations and obtain an equation obeyed by the
carrier density inside a potential barrier by explicitly
considering the functional forms derived in different
cases. We then proceed to outline the tunneling current
formulation and then present a comparison of the
formulation to experimental results.
Madelung Fluid Form of the Schrodinger equation

The Schrodinger equation for a carrier system
confined in an arbitrarily large box (zero flux), can be
written in Madelung-B6hm form as [5],

h2 V2 PE'i)[E(i)-V(x)]+ E() -o
2m ~Ei (1)

The quantity Pi is the probability density, i.e. the
density of a carrier in the "pure" state i, while E(i) is
the corresponding energy eigenvalue. Pi is of course,
given by the usual relation,

(2)

Carriers Density Inside a Large Potential Barrier
We are interested in determining the form of

the total carrier density in the mixed state (i.e. the
ensemble) inside a potential barrier. The total carrier
density for a carrier system can be written in terms of
the eigenfunctions {JTJ of the Schrodinger equation as,

n(x) = nO~f f[E(i)]TE(i)(x)E(i)(x) (3)

where, f(E) is the distribution function in energy
(Boltzmann or the Fermi distribution function for the
degenerate and non-degenerate cases respectively) and
nO is a suitable normalization constant obtained from a
sum over all states. For the case where we have a
continuous spectrum parameterized by a wavevector k,
we can write the density using an integral version of
(2) as,

n(x) = no fdk.f[E(k)i'Jk<(x)TPk(x)
0

(4)

In order to evaluate analytically the density in
(2) inside the barrier, we can consider three different
cases - that of simple potential barrier at flat band
conditions, a nearly free carrier system, and a confining
potential on one side of the barrier shown respectively
in Figs la, lb and I c, respectively.

In the first case the Schrodinger equation can be
exactly solved for the scattering state basis [6], while in
the other two cases, one can use the WKB
approximation to obtain the wavefunctions inside the
barrier. Since the latter case is quite general and
subsumes the first we will present this in detail.

We can write the evanescent mode wavefunctions
inside the barrier using the WKB approximation as

'PE(x)= A ()exp -J(TEp(x)=h0f p(x) dx

p(x)= V2m(Eb+V,.(x) -E)

(5)

In the above, Eb is the barrier height (assumed to be
large compared to the thermal energy kBT) and V,m is
the smooth self-consistent potential. E and p(x) are the
energy of the state and the classical momentum
respectively.

For the sake of convenience we define a
wavevector corresponding to the barrier height as,
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We also define the thermal wavelength, Ah

Ath=Am T

(6) In this particular case, since Boltzmann statistics was
used to demonstrate the idea the average energy is the
kinetic energy corresponding to a classical electron gas
in one direction, i.e.

KE)= 2BT
(7)

Writing the momentum in terms of the wavevector k
using the de-Broglie relation, we can write the above
for a large barrier to a very good approximation as,

the average energy due to motion of carriers towards
the oxide interface.

Thus the functional form ofthe total (mixed-state)
density inside the barrier is the same as an appropriate
pure-state probability density at an average energy kT/2
and therefore it satisfies the differential equation,

TE (X)

=ClexpK-kb xl+_'Inx ))

=C expK-kbx+-kxkb jV(x)dx+ k- (8)

We note formally that the probability density PE(x)
corresponding to the above wavefunction satisfies (1)
inside the barrier, which can be solved to yield (6) if
the boundary conditions on the probability density on

either side of the barrier were known.
Computing the density inside the barrier using (4)

and the Boltzmann distribution function with the above
expression for the wavefunction yields [7],

_v Vs.m(X
expy-2kbx--2kb )mdx-

n(x) =no04Eb 2Eb/ (9)
1-

ith Eb 2/JEb

=n expL 2ki{x+f s' -")dcx J+ ¾E,

s

j('X( ( 0 b ) flEb Ab b

It is immediately seen on comparing (7) with (6)
that the density inside the barrier obeys the following
relation

n(x) C PE)('x) (10)

with the average energy obtained by averaging over the
eigen-energies of the one-dimensional Schrodinger
equation.

KE) = E E(i)f [E(i)] (11)

[KE)- V(x)]+ 2 V
=0

2m -n (13)

It should be noted here, that unlike the usual derivation
of density-gradient theory which starts from the free
electron Wigner function [1], the presence and
largeness of the barrier are directly incorporated into
the derivation of Equation (12), by explicitly
considering the density function inside the barrier.
Bound states and Fermi-Dirac statistics

Although the derivation in the previous section
considered a continuous spectrum and Boltzmann
statistics for demonstration, the situation can be readily
extended to degenerate carrier gases using Fermi-Dirac
statistics and for the case of carriers in bound states
leaking through a barrier (Fig. Ic). In this case one will
need to employ the discrete sum (3) in addition to (4)
to evaluate the density inside the barrier [7].

For large potential barriers with quantized
states on one side (similar to a MOSFET in the
inversion regime) the average energy in Equation (13)
will only be determined by the quantized states outside
the barrier. The evanescent modes inside the barrier are

a small perturbation and do not contribute significantly
to the average energy. The increased average energy
due to quantization outside the barrier results in higher
penetration into the barrier.

Tunneling Current Formulation
Now that the equation for the density inside the

barrier is unambiguously derived we can proceed to a

calculation of the direct tunneling gate current of a

MOSFET for demonstration [9]. We follow broadly the
procedure adopted in [4] for elastic tunneling by
separating the carrier populations emitted from the two
contacts (in this case from the substrate and the gate
respectively). This procedure is valid since we do not
normally consider scattering processes that can mix the
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injected carriers from the two contacts while
calculating the tunneling current through a barrier.

Each of the two populations injected into the
barrier from the contacts individually obeys (4) that
can be solved to yield the density variation inside the
barrier. There are two boundary conditions required to
solve Equation (13) for carriers injected from each of
the two contacts. The first boundary condition is
obtained from the upstream (injecting) contact and is a
simple Dirichlet condition depending on the density of
carriers at the oxide-semiconductor interface. In this
case we use a relation derived in [10], which shows
that the carrier density is suppressed by a factor of/Eb
from the classical case near a large barrier.

n = /NFb12(UC)I ,fiEb
_ E -EF

kBT
(14)

where n1 is the density of the population injected into
the barrier from the substrate at inversion.

The two populations differ in their Fermi levels,
which they retain from the originating contact, and thus
in the boundary conditions imposed on the respective
differential equation (Fig. 2.). The condition is not
unlike a p-n junction diode, where electrons and hole
quasi-Fermi levels are constant across a depletion
region because of a lack of recombination. Once across
the depletion region the Fermi levels are equalized by
recombination. For the case of two carriers the driving
force for the equalization of Fermi levels is
recombination. For a single carrier, emitted from two
different contacts with different Fermi levels the
driving force is scattering and in the absence of these
the injected populations retain the Fermi level of the
originating contact until they suffer inelastic scattering
processes downstream at the other contact.

The virtual anode boundary conditions at the
downstream contact [4] are used for the second
boundary condition to solve (13).

an1
aX =tox

0

For the barrier thicknesses that are of interest (> 0.5
nm) the above boundary condition yields negligible
error in the carrier density.

The current is calculated using the relation,

Jn = qY2.nl (16)

where 72 is a recombination velocity at the downstream
contact. This determines the rate at which carriers are
absorbed into the downstream contact by inelastic
scattering processes. Once again the p-n junction diode
analogy is apt. In a p-n junction diode the current is
determined by the rate of recombination of electrons
(holes) at the p (n) type region as minority carriers. In
the tunneling example for single carriers the current is
determined by the inelastic scattering processes that
relax the carriers back to the Fermi level of the
downstream contact. In the absence of any detailed
models for these processes we use an aggregate fitting
parameter y to model it.

The model requires an input in terms of the
average energy of carriers entering the barrier from
each contact in Equation (13). This depends on the
detailed potential profile at the upstream contact, but
for simplicity the van Dort model [8], which assumes a
triangular well is used in this work. In particular we
have used,

KE) Ez +1.857 qh Fsrf9Ms (17)

where E, is the conduction band edge as the average
energy of carriers in the Equation (13). This can of
course, be further refined in the spirit of the
macroscopic treatment ofthe inversion layer.
Numerical Results

Figure 3 shows the injected carrier densities from
each contact over a 1.5nm oxide barrier with an applied
bias of 2V. Notice that n1 and n2 represent the QM
densities under the tunneling conditions in the
classically forbidden oxide bandgap. If the Fermi
levels on the two sides of the barrier are equal, then the
resulting flux from each will cancel out exactly. Figure
4 shows an excellent match for the model to
experimental data over a range of applied biases and
oxide thickness.

The applicability of the above method only
hinges on the WKB assumption for the functional form
of the evanescent modes inside the barrier and can
hence be applied for the F-N tunneling regime simply
by changing the integration limits for (4). All other
corrections such as effective mass variation can also be
readily applied.
Conclusions

We have presented a modified density gradient
model based on the Madelung-Bohm fluid theory of
QM including all large-barrier information without
incurring small perturbation equilibrium assumptions
on the Wigner function. The presentation here
completely circumvents all the usual problems of
abrupt variation of the potential, as well as the
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largeness of the potential usually encountered in
derivations of density-gradient theory. The formalism
is promising to be directly incorporated in device
simulation.
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Fig. 3. The total density n, and the individual injected
densities n1 and n2 from the solution of (4) with the Poisson
equation. The high tail of n1 is responsible for the large
tunneling current in Fig. 4.

Fig. 1 a) Simple potential barrier at flat band, b) Large
potential barrier without a confining well c) Large
potential barrier with a confining potential well
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Fig. 2 Variation of the chemical potentials, for electrons
only, injected from the two "contacts" 1 and 2. The
equalization of the chemical potentials occurs due to
thermalization processes in the "downstream" contacts and
the rate of recombination directly yields the current
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Fig. 4. Direct tunneling current densities, calculated
including a simple triangular well quantization condition
for the average energy, compared to data from [9]. Solid
lines are the simulation results while the dots indicate data
pointsThe oxide thicknesses are indicated next to the plots.
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