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Abstract-The basic assumptions used in the analysis of random
doping induced fluctuations through the linearization of
transport equations are carefully considered. It is proved that, in
the framework of the density-gradient model, the terminal
currents, transconductance, and threshold voltages of MOSFET
and SOI devices are more or less linear with respect to the
magnitude of variation of the doping fluctuations. This fact
supports the hypothesis of the linearization techniques and
explains the good agreement existent in the literature between the
results of statistical analysis of semiconductor devices by using
the linearization technique and the Monte-Carlo simulations.

Keywords- random dopingfluctuations; linearization.

I. INTRODUCTION
A new technique for the analysis ofrandom doping induced

fluctuations on the intrinsic values of parameters of
semiconductor devices was proposed in [1-4]. This technique
proved to be computationally very efficient and reliable for the
analysis of parameters variations in MOSFET devices. The
technique is based on linearization of the transport equations
with respect to the fluctuating quantities (doping, electrostatic
potential, electron and hole concentrations, etc) and on the
evaluation of the variances of quantities of interest by using
superposition. Although the linearization technique has been
applied extensively to the analysis and evaluation of random
doping induced fluctuations [5-8], the errors induced by the
linearization have not been analyzed. In this article we carry
out a detailed analysis of the linearization errors by verifying
the assumption of linearity between the device parameters and
fluctuations of the doping concentration at different locations.

The main assumption of the linearization technique is that
fluctuations are small and, in the first-order approximation, the
variations of any parameter A of the semiconductor device
depends linearly on the magnitude of fluctuations of the doping
concentration at different locations:

A= SA(r)D(r)dr' (1)

where Q represents the semiconductor region, D (r) denotes
the fluctuations of the doping concentration at location r, and
SA (r) is some "weight" function, called the sensitivity
function of parameter A [1,3,6]. In (1) D(r) should be

regarded as a random field equal to D (r) - (D (r)), where

(D (r)) is the average value of the doping concentration at
location r. The variance of parameter A is:

2= I LSA (r)SA (r')ACF[D(r),D(r')]drdr', (2)

where ACF [D (r), D (r')] is the autocorrelation function of
the doping concentration. If the doping concentrations at
different locations are independent Poisson random variables,
the variance of A can be shown to be [2]:

2 = f[SA(r)]2 D(r)dr.
Q

(3)

It is apparent from the previous equations that the accuracy in
the calculation of CA by using (2) [or (3) in the case of Poisson
distributions] depends on wheatear fluctuations A can be
written as a linear combination of D5(r) [ see (1)]. In order to
check if this assumption holds for normal semiconductor
devices, we carry out simulation experiments in which we vary
the doping concentration at different locations inside the device
and measure the variation of intrinsic parameters of the device
(e.g. threshold voltage, small-signal parameters, etc.). If the
relation between the doping concentration and the parameters
of the device is linear, the linearization technique can be safely
used to compute the variances of device parameters. If this
relationship is not linear in the range of variation of the doping
concentration, the linearization technique might overestimate
or underestimate CA .
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II. LINEARIZATION TECHNIQUE
It is apparent from the previous section that the variance of

some parameter of the semiconductor device can be computed
if the sensitivity function of that parameter is known.
Therefore, in this section we will describe the procedures for
the computation of the sensitivity functions for some of the
most important parameters of the semiconductor device:
terminal currents, threshold voltages, and transconductance. In
order to make the linearization technique suitable for numerical
implementation on standard semiconductor device simulators,
we present it in compact matrix form.

Let us write the discretized transport equations in vector
form [2]:

F(X,D,VG)=O, (4)

of the doping concentration. By solving (5) and (6) for the
fluctuations of the terminal current we get:

(7)laO= -L_a FD+(ID )H DS

where gt is the transpose of column vector go that can be
found by solving the following linear system of equations:

FXOga = IX' (8)

where FX denotes the transpose of matrix F'X. By comparing
(1) and (7), it can be inferred that the sensitivity function of the
terminal current is given at each mesh point by:

where F is a nonlinear vector function of the unknown "state"
vector X, doping concentration vector D, and gate voltage
V,. In the simulations presented in this work the transport
model is the density-gradient model [8], and the components
state vector consist of the mesh point values of electrostatic
potential, electron and hole concentrations and quasi-Fermi
potentials. Doping concentration vector consists of the mesh
point values of the doping concentration in the device, and can
be written as a sum of its average value (D) and fluctuations
D: D = (D) + D. Doping fluctuations induce fluctuations of
the state variable: X = (X)+X, which can be computed by
using transport equations (4).

A. Fluctuations of Terminal Currrents
Let Ia denote the current through terminal a of the

semiconductor device. To compute the sensitivity function of
Ia it is convenient to write terminal currents as explicit
functions of the state vector and doping concentration:
Ia = Ia (X, D). The fluctuations of terminal currents Ia can
be found by linearizing this equation with respect to the
fluctuating quantities:

SI = CL-( g FD ) + (IDa)i A ViA (9)

where AV, is the volume of the mesh cell i . The variances of
terminal currents can be evaluated by using (3), which, in

discretized form, reads: cI = g'aF-(ID) ] (D) ALj

where (D)i is the average doping concentration at location i

B. Fluctuations of Threshold Voltage
The technique for the calculation of the sensitivity function

of the threshold voltage in MOS device can be developed
similarly to the technique for the calculations of SI .
Fluctuations of the threshold voltage should be understood as
fluctuations of the gate voltage VT = VG when the drain current
is constant (fluctuations are zero): 'Drain = 0. Thus, one can
write the following system of equations:

FXX + FDD+F V =0

( X ) ( VD )

(5)

where I,' and I,' are the derivatives of jA with respect to the
state variable and doping concentration, while superscript t
denotes the transpose of the given vector. Since VG is constant,
linearization of transport equations (4) gives:

where FV are the derivatives of the transport equations with
respect to VG . By solving this system we obtain the following
equation for the fluctuations of the threshold voltage:

V 9gDrain FD + (ID)a(1))VT gt.F *D, (11)

(10)

FxX + FDD=O,

where FX and FD are the derivatives of F with respect toX
and D, respectively. All derivatives are computed at the given
dc bias point and by assuming constant (non-fluctuating) values

where vector gDrain can be computed from (8) with a = Drain.

The sensitivity function of VT is given at each mesh point

by SV = S/(gD F ), where SI' are the mesh point
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values of the sensitivity function of the drain current. As we

will show in the next section, product gt * FV is equal to the
negative value of the transconductance of the device (gm),
which gives the following simple relation between the
superposition coefficients of VT and 'Drain SV = -S/gmS

C. Fluctuations ofthe Transconductance

Transconductance can be computed as g. = ajIiDraIVG =

XDrai XG, where x is the solution of FxXG+FV =0. BY~G G

using the last two equations we obtain

gm=-raFn( ) FV =-gt Fv . Fluctuations of the doping
concentration induce fluctuations of the transconductance. The
sensitivity function of the transconductance can be shown to be
equal to the components of vector ftF^D where is the
solution of the following system of equations [9]:

FIt t = Bt IDrainXX~ gDrain -1X X G (12)
Figure 1. Fully depleted, double-gate SOI (a) and MOSFET (b) devices used

in this study. Doping concentration al locations (1), (2), (3), and (4) are

changed and device parameters are computed.

and matrix B can be approximated by using:

B = FX(X+EXa>Fx (X)
£

(13) -8
._;

where £ is a small parameter and ID"aI" denote the Hessian
matrix of the drain current. In simulations, - can be chosen
between 10-3 and 10-9. By computing matrix B using (13), we
avoid the evaluation of second order derivatives of the
transport equations, which would require cumbersome
implementation procedures for in standard device simulators.

III. ANALYSIS OF LINEARIZATION ERRORS
As mentioned in the introduction, the accuracy in the

computation of variances of parameters of semiconductor
devices by using the linearization technique depends on
whether transport equations are linear with respect to doping
fluctuations. To test the validity of this assumption we consider
various semiconductor devices and carry out simulation
experiments in which we vary the doping concentration at
different points and compute the intrinsic parameters of the
device (e.g. terminal currents, threshold voltage, small-signal
parameters, etc.) as a function of the doping concentrations at
these points. We consider the following three devices with
simplified architectures: (a) a fully depleted, double-gate SOI
device with the thickness of the semiconductor 10 nm, the
oxide thickness 2 nm, and doping concentration of 1018 cm3 in
the channel [see Fig. 1(a)]; (b) a MOSFET device with
improved architecture (retrograde well and halo implantation)
with oxide thickness of 3 nm, doping concentration in the
channel between 1016 CM3 and 10l8 CM3 [see Fig. 1(b)]; (c) a

p-njunction diode with the doping concentration at the cathode
101 cm-3 built on a p-type substrate doped with 1016 cm-3.
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Figure 2. Dependence of the drain current and transconductance on the doping
concentration at mesh points denoted by (1), (2), and (3) in Fig. l(a).
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Figure 3. Dependence of the drain current, transconductance, and threhsold
voltage on the doping concentration at mesh points denoted by (1), (2), (3),

and (4) in Fig. 1(b).
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Fig. 5: Sensitivity function of VT of the MOSFET device represented in Fig.
l(b). Blue areas represent regions highly sensitive to random doping fluctua-
tions, while red areas represent regions less sensitive to doping fluctuations.
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Figure 6. Drain current (continuous lines) and standard deviations of the drain

current (vertical bars) for the MOSFET device represented in Fig. 1(b).

The locations where the doping concentrations were varied
are represented by numbers from (1) to (4) in Figs. 1(a)-(b).
The results of the simulations are represented in Figs. 2, 3, and
4 for the double gate SOI device, MOSFET, and p-n junction
diode, respectively. There is a remarkable linear dependence of
the parameters of the SOI and MOSFET on the doping

concentrations, which strongly supports the basic assumptions
of our linearization technique. This linearity accounts for the
good agreement that exists in the literature between the
linearization technique and the statistical methods [1,10] in the
case ofMOSFET devices. In the case of the p-n junction diode
the current characteristics are not linear for a large range of
variation of the doping concentration. However, if the
fluctuations of the doping concentration are small, the
dependence of the terminal current on the doping
concentrations remains linear. To test the accuracy of the
linearization technique in the case of p-n junctions we have
generated 200 diodes with different doping concentrations but
the same average values of the doping and computed the
terminal currents for given forward potentials across the diode.
The statistical (Monte Carlo) techniques give a standard
deviation of the terminal currents of 0.26,uA, while the
linearization technique gives 0.31 ,uA; the average value of the
drain current is 1 uA in both cases. The relatively good
agreement between the two techniques suggests that the
linearization of transport equations is still a fairly good
approximation for p-n junction diodes. Finally, the sensitivity
function of the threshold voltage of the MOSFET device is
presented in Fig. 5. The drain current and the standard
deviations of the drain current for the DG-SOI devices are
represented in Fig. 6.

In conclusion, the linearization technique provides a
powerful and accurate tool for the analysis of random doping
induced fluctuations in semiconductor devices. A remarkably
linear dependence was observed between the parameters of the
MOSFET and SOI devices and doping fluctuations, which
supports the assumptions of the linearization technique.
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