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Abstract—1In this paper we show the effectiveness on 3-
dimensional domains of a Wavelet-based Adaptive Method
(WAM), which is able to drive a progressive adaptation of
computational meshes suited for semiconductor device simulation
in order to capture sensible regions. An improved two-step
wavelet analysis is performed on some relevant physical variables,
allowing for a highly selective refinement of domain regions with
stringent resolution requirements for simulation accuracy; more-
over, a mesh quality control algorithm ensures a smooth grading
of element sizes and eliminates bad configurations affecting
convergence. Complex real structures can thus be handled with
negligible computational overhead and with no skilled control
from the user. Simulation results related to a 3D p-n diode and to
different nMOSFET driver geometries demonstrate the capabil-
ity of the proposed automatic tool to ensure good convergence and
accuracy properties with considerable advantages over reference
manually-constructed meshes of much larger size.
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I. INTRODUCTION

The accuracy of semiconductor device simulations strongly
depends on the characteristics of the computational grids used
for the solution of partial differential equations governing
the device behavior. Mesh generation is thus a delicate task,
which normally requires deep physical insight and a difficult
trade off between the resolution level necessary to achieve
the desired precision and the computational cost determined
by the corresponding grid size. Moreover, the task becomes
more and more challenging as the dimensionality of the
problem and the complexity of the domain increase: great
expertise and long time are then required for the user to
construct an appropriate mesh for each specific simulation. In
this framework, automatic mesh adaptation algorithms would
represent a very useful tool able to relieve the user from such
a critical and time-consuming task.

In order to optimize the number of unknowns which arise
from the discretization of device equations, many adaptive
strategies were proposed in literature: most refinement meth-
ods are driven by the use of the local truncation error (in
both Poisson and current continuity equations [1]), or by other
a-posteriori error indicators that either utilize solutions of
local Dirichlet problems, or measure jumps of relevant quan-
tities [2]. While providing a means to control the simulation
accuracy, these approaches generally introduce a significant
computational overhead, which can easily become unbearable
when complex simulation domains are involved, as is often
the case in three-dimensional simulations.
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Recently, a new refinement procedure has been pro-
posed [3], which is able to construct anisotropic two-
dimensional grids, whose density remarks the internal structure
of physical relevances, by means of fast algorithms [4] avail-
able for the Wavelet Transform (WT). The method exploits
the powerful localization properties which arise from the
optimality of WT for the characterization of Besov spaces.
Such spaces are suited to capture the layer behavior of the
solution of the PDEs which model the electronic devices.

In the following sections we present an extension of this
algorithm, implemented to deal with complex 3D geometries.
Since 3D simulations are notoriously extremely challenging
due to the large grid size usually required to accurately
describe the device domain, the proposed software does not
arise from a straightforward generalization of the 2D case, but
includes significant modifications aiming at a considerable se-
lectivity improvement of the refinement strategy, which avoids
redundant nodes insertion. Another major issue is mesh qual-
ity: while the presence of obtuse angles can affect convergence
and accuracy of standard finite-volume simulators, in literature
no algorithms are known which can in general guarantee a
Delaunay tetrahedralization of 3D domains without any obtuse
angles [5]. In contrast, the dyadic structure of our grids allows
for a simple correction procedure [6] which eliminates all
obtuse angles in element faces parallel to coordinate axes, with
clear benefic effects on simulations.

A p-n diode with 3D-shaped junction and complex nMOS
driver geometries have been chosen as test structures to
demonstrate the capabilities of our tool to deal with anisotropy
and large simulation domains, ensuring both mesh quality and
good convergence and accuracy properties.

II. THE WAM APPROACH

The wavelet representation of functions originates a set
of projection coefficients (details), structured over different
resolution levels (or scales): low level coefficients describe
the smooth features of the data, spanning over broad intervals,
while the high level ones are associated with strongly localized
high frequency singularities [3][4]. The multiresolution nature
of the WT thus allows for zooming procedures which progres-
sively reduce the uncertainty of singularities location: in fact
rapid variations in the solution shapes, such as sharp changes
in low order derivatives or even jumps, generate high wavelet
coefficients distributed on the space-scale plane as shown in
the example of Fig. 1.
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Fig. 1.  WT of a discontinuous signal (top figure). The pixel intensity
represents the modulus of wavelet coefficients for a certain position (abscissa
value) at a given scale (ordinate). Strong gradients and singularities could be
localized following local maxima across the space-scale plane with a zooming
procedure.

An important application of this kind of analysis is the
adaptive approximation of functions by means of a simple
threshold procedure that keeps the largest wavelet coefficients
only: this task is equivalent to constructing an adaptive ap-
proximation grid, whose resolution is locally increased where
the signal is irregular. Our approach exploits this technique:
a partial solution is calculated on a coarse grid, which is
then iteratively and automatically refined only in the regions
where the wavelet coefficients calculated on the preliminary
results are greater than a given threshold. The refinement
algorithm inserts the new nodes in dyadic positions: this allows
to construct admissible stencils for coefficient computation on
higher levels and consequently the procedure can be iterated
to improve the resolution in sensible regions with a zooming
analysis across scales. In the following cases, we consider the
transformation on the electrostatic potential ¢ and on carrier
concentrations n,p, but different strategies based on other
physical quantities are possible as well.

III. 3D SELECTIVITY AND GRID QUALITY IMPROVEMENT

The analysis which drives the adaptive refinement consists
in the calculation of detail coefficients by convolving the con-
sidered function samples on a number of grid points depending
on the particular wavelet chosen. In our case, the choice
of the db2 wavelet [7] implies the use of four equidistant
samples in each direction for the computation of a single
coefficient: 3D details are then obtained by convolving 4* grid
samples (the stencil or “support” of the wavelet computation,
see Fig. 2(a)). Three directional coefficients can be calculated
on each support by using a high-pass filter in one direction
and low-pass filters in the others. Each coefficient provides a
global information on the regularity properties of the analyzed
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Fig. 2.  (a) 3D wavelet support. (b) Details of the Wavelet refinement.
The wavelet coefficient (wc) is calculated convolving 43 samples of the
computational grid. A further step based on the Haar Transform is added
to the algorithm presented in [3] to keep the number of inserted vertices as
low as possible.

function over an area whose extension depends on the support
size corresponding to the current resolution level. However,
a certain amount of redundancy is intrinsically introduced by
this kind of approach since the whole support is refined even
in case of a sharp singularity localized in a small portion of
it. While in 2D this is not a relevant issue, in the 3D case the
insertion of unnecessary nodes can easily make the mesh size
grow too large: for this reason the original refinement strategy
has been improved in order to achieve a greater selectivity.

In the modified approach, if a sensible region is detected
by means of the db2 analysis, a further transformation step
based on the Haar wavelet [8] is performed to drive the
anisotropic grid construction. Since the Haar support only
includes two samples in each direction, a 3D db2 stencil
can be split into 3% Haar supports: the new analysis step
thus provides additional informations on the localization of
singularities, allowing to refine the larger db2 support only
partially according to specific criteria on Haar coefficient
ratios. By means of the multidirectional analysis, different
portions of the original support can also be refined in different
directions, thus providing a better resolution of the anisotropic
characteristics of the solution. Fig. 2(b) schematically illus-
trates the described procedure, which considerably improves
the refinement selectivity, producing up to a 20% reduction in
the number of new nodes insertion.

To provide the possibility of integrating the adaptive method
in the framework of conventional device simulators, some
requirements have to be fulfilled: in particular, the finite
volumes method implemented in standard simulator engines
works better if vertices connectivity is defined by a Delaunay
mesh without obtuse angles. In two dimensions, due to the
semiregular nature of the wavelet-based grid, the number of
grid patterns generating obtuse triangles is small, and for each
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Fig. 3. Block diagram of the validation tool.

one we were able to define a stable correction strategy [6]
based on either edge swapping or the insertion of Steiner
points. The problem in 3D is much more challenging; however,
since our approach is still dyadic, an extension of the cor-
rection algorithm has been implemented, which considerably
improves the quality of the mesh by eliminating all obtuse
element faces parallel to coordinate planes. The procedure has
proved to be stable and the number of added nodes is small;
on the other hand the introduction of such a step produces
great benefits to the solution accuracy in most cases and it is
often essential even for simulation convergence.

IV. THE VALIDATION TOOL

The wavelet-based refinement module (WAM) has been in-
serted into the validation tool depicted in Fig. 3, providing the
convenient interfacing with a mesh generator block (MESH)
and a standard device simulator engine (SOLVE).

MESH analyzes an input file describing the device to be
simulated, and, according to geometry and materials, generates
some data structures containing both mesh definition and grid
points classification suitable for a device solver based on the
Scharfetter-Gummel box method, so the validation tool natu-
rally fits into the framework of conventional TCAD softwares.
The MESH module is implemented by TETGEN [9], a C++
open source tool that supports Delaunay tetrahedralizations
and the insertion of additional points into the mesh. The latter
feature provides an efficient interfacing mechanism for the
refiner block. The simulation phase results are then used by the
refinement module, that represents the WAM extension to 3D
problems described above. Once the wavelet-based refinement
algorithm has been performed, the correction procedure checks
the new grid in order to eliminate the wrong configurations.
Then the meshing module is invoked again to build a boundary
Delaunay mesh from the resulting set of points. This cycle
goes on until a stopping criterion is satisfied.

Our approach can be performed during a quasistationary
simulation with a fully adaptive strategy, i.e. adapting the
mesh at each bias step. This capability is essentially due to a
gradual adaptation strategy which preserves the computational
erid from strong variations in nodes location between two
consecutive bias steps, thus preventing convergence issues and
numerical artifacts in the IV characteristics. As far as the
recomputation of the solution on the adapted grid is concerned,
extensive numerical tests suggest that with the proposed
refinement strategy nonlinear node block Jacobi iteration or
homotopy techniques can be completely avoided, even when
one has to deal with complex and numerically challenging
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Fig. 4.

3D anisotropic refinement of a p-n diode.

problems such as breakdown simulations, preserving accuracy
and reducing CPU time.

V. SIMULATION RESULTS

The automatic refinement strategy has been applied to
simulate a set of 3D test structures including a diode and
various nMOS drivers with different geometries.

The p-n junction provides a simple but effective test case
to highlight the anisotropic capabilities of our tool. Fig. 4
shows how the refinement correctly follows the junction shape,
increasing the resolution only in the required directions, with
smooth transitions in the profile corners. The improved strat-
egy also ensures good selectivity properties, so that the great
majority of mesh points are concentrated in domain regions
where the relevant physical phenomena take place.

In Fig. 5 the meshes for two different-shaped n-channel
MOSFET drivers are shown; the device structures were se-
lected to test the refiner behavior when dealing with complex
geometries and large domains. The figure illustrates some
interesting features; in particular, it is important to notice:
(1) how the adaptive strategy accurately meshes the regions
which have stringent requirements, (2) the absence of obtuse
triangles, (3) the smooth grading of mesh elements.

The accuracy of the contact current calculated with our
meshes was estimated in comparison with a reference sim-
ulation performed with meshes of much larger size. The
effectiveness of the WAM approach is influenced by the choice
of the threshold which discriminates the relevant wavelet
coefficients: an analysis of such an influence for the 3D p-
n diode is depicted on Fig. 6, showing how a good choice
provides the same degree of accuracy with a great saving in
the number of grid points. Moreover the same trend appears at
all the successive levels of the wavelet analysis, thus allowing
to perform the threshold selection at the first level, when the
mesh size is still very small.

Finally, Fig. 7 demonstrates how the obtuse triangle cor-
rection procedure is essential to ensure simulation accuracy:
the masking of such procedure produces a poor match with
reference results in forward bias and definitely compromises
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Fig. 7. Comparison of IV curves for a 2D silicon p-n diode with
curved junction. The WAM refinement provides a good match with reference
characteristics when combined with the obtuse triangle correction: this step is
essential to ensure accuracy and even to achieve convergence in the reverse

bias.

of some notoriously challenging issues such as redundancy
and grid quality. In this paper a modified strategy has been
proposed, which strongly improves the selectivity properties of
the refinement tool through a two-step wavelet analysis. This
also provides an efficient and accurate meshing of the typical
anisotropic characteristics of semiconductor device internal
quantities. Moreover, the semiregular feature of WAM grids
allowed for the implementation of a quality check procedure
able to remove undesired mesh patterns affecting simulation
convergence and accuracy. The proposed validation tool has

Fig. 5. 3D anisotropic refinement of nMOSFET drivers.
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