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Abstract - A novel methodology is presented to generate the
worst-case model including extraction of its compact model
parameters This method enables physically accurate worst-
case prediction in the early stage of device development
concurrently. It is found through the intensive TEG analysis
and TCAD simulation that correlations between process factors
have a significant impact on the worst-case corner estimation.
A new extraction method ofcompact model parameters based on
error propagation analysis is developed to consider correlations
between parameters.

I. Introduction
In sub-I 00nm CMOS it is a possible case that the worst-

case performance does not improve, even if the typical perfor-
mance does LI]. Recently it was pointed out the correlation be-
tween process factors influence the worst-case corner (Fig. 1)
t211 And importance of FSISF corners in advanced SRAM de-
sign was also pointed out [3] Assumption of strong correla-
tions between process factors is possible to lead to unrealistic
worst-case estimation. Furthermore parameter extraction method
considering correlations among compact model parameters was
proposed [4].
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Fig 1i Impact of n-p correlation on the worst corner estimation.
FF/SS shrink, FSISF expand.

For the short TAT development and high yield in mass
production, accurate worst-case model prediction in the early
stage of device development is desired. However, there are not
sufficient measurement data during development phase to de-
termine the worst-case in the statistically accurate manner. TCAD
can be a strong tool to cover the shortage of data and predicting
entire run-to-run/inter-wafer/intra-wafer variation in the produc-
tion line. It needs only the variation data ofeach process step or
equipment to predict the worst-case and therefore enables con-
current development.

In this work, we elucidate the significance oftwo "cor-
relations" in the process of the worst-case model generation.
One is the correlation between input process factors in predict-
ing worst-case using TCAD-RSM and the other is that between
compact model parameters in extraction (Fig.2).
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Fig 2. Overall concept and procedure of this work.

II. TEGAnalysis
TEGs with different patterns and sizes are fabricated

using hp9Onm LSTP process to investigate not only the magni-
tude of variation but also the correlations among each E-T da-
tum. All data shown here are taken from large (WU>I unm) pattern,
in which random variation and size variation (8W) can be ne-
glected.

It is observed that FETs ofpattern-A which is a widely-
used layout pattern in standard cells, have stronger 1d -l corre-
lations than those of pattern-B (Fig.3). It is inferred that differ-
ence of L -L correlation after lithography and etching is agn go
principal mechanism [2]. And it means that correlation coeffi-
cients depend on TEG layout patterns even if they are drawn
with the same dimension. Therefore, variability evaluation with
an actual layout pattern is necessary for precise worst-case pre-
diction.

It is also found that there are negative correlations in
V -V and I -J plots in long channel regions in contrast to
positive correlations in short channel regions (Fig.4). There are
two possible mechanisms for the negative correlation: one is a
strong correlation between gate oxide thickness to. and fixed
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charge amount Q which is related to the nitrogen profile in the
oxynitride, and the other is screen oxide thickness t fluctua-
tion at channel implantation process. The former model proves
inadequate by small correlation between EOT and V. On the
other hand the validity ofthe latter model is supported by nega-
tive correlation of C6 between nFET and pFET (Fig 6) This is
due to the difference of dopant species and peak depth Fig.5).
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Fig.4. Die-to-die variability and correlation between Id,, and 1I
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Fig.6. Correlatior between C p(rnFET) and CdIP(pFET).

III. Statistical Simulation by TCAD

Firstly TCAD has to be well-calibrated using SIMS
and E-T data oftypical device. It is better to confirm the predict-

ability of E-T data with slightly different process condition, for

example, channel implantation dose or halo dose It is found 3-
stream diffusion model [5] and drift-diffusion device model with
quantum mechanical correction model are satisfactory to repre-
sent electrical characteristics ofour hp9Onm devices over a wide
range ofdevice size (Fig.7). Fig.8 depicts the flow ofworst-case
prediction using TCAD-RSM [6.. After the sensitivity analysis,

major process factors, Lg of/set spacer, to., channel dose and tscr
in this work, are selected. Then, TCAD simulations are executed
based upon DoE. After generating RSFs, Monte Carlo analysis
Ldone in a few minutes.

Fig.9 shows the results ofMonte Carlo simulation us-

ing TCAD-RSM considering the process correlations taken
through TEG analysis. In short channel region, correlation ofLg
between nFET and pFET has a significant impact, while tScr has
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a large impact in long chainiel.

7 nFET
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Fig7. TCAD calibration results for Renesas hl90nm LSTP process.
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Fig9. Predicted worst-case using TCAD-RSM.
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Fig8. Flowchart of w7orst-case prediction by TCAD-RSM.

I Statistical Parameter Extraction

Compact model parameters are needed to evaluate cir-

cuit performiiances Howexever, since the parameters do not corre-

spond one to one xxith process factors, that is, TCAD paramn-

eters, the correlation between the parameters have to be taken
ilnto account to represent the correlated variance of the electri-
cal characteristics given by TCAD or Si [4].

The flo chart of a nex ly developed statistical compact

model parameter extraction scheme is shoxn in Fig. 10. In this

scheme,thle parameters are selected based on the factor loading

in PCA It is founlid that by using only tlhfree of BSIM4 paramn-
eters (XL VTHO and LPEO) statistical - characteristics of ouLr
hp9rni devices are well reprodLced The covariance matrix of

these parameters C(P) is obtained trom tlhat ot ET data I and

tlhie parameter sensitivity matrix A, by applying the law ofpropa-
gation ot uncertainty [7] This metliod has a great merit that

once the parameter set ot typical device and distribuLtion o ele-

trical properties are given parameter x ariance is determined

uniquely. F-urtlhe ore it is highly practical in that it does not

need iterative calculation. Fig. 11 and Fig. 12 show the compari-

son of the statistical characteristics of measured E-T data xwith
the results ofMonte Carlo sinulation using thlie extracted param-
eters. The L and bias dependence of the fluctuaations of the
measuredl,1, and I,p including their correlation agrees w ell xwith
the simnuLilated values. The tG, effect mentioned above is reflected
in the negative correlation betw een VTHO(nFET) and
VTHO(pFET), and the positive correlation in short channel re-

gioin is mapped into the correlation betxxeen XL(inFET) and
XL(pFET). as shoxx ii in Fig. 13. Th-ius, the statistically correlated,
accuLrate w orst-case model becomes available in circuit design
emn, ironrnent.

V. Conclusions

A novel methodology has been proposed to generate
the xw orst-case model parameters using TCAD and to extract its
compact model in the early stage of device developmenlt.
Through TEG analysis, it has been found negative correlation
betxx een]r and Id is observed in long channel region ihile
positive in short. It has been also founlid correlation coefficient
can be varied by device layout pattem even wxxith the same size.

And they ha-x e a great influence on the xx orst-case corner. TCAD-
RSM xw as successful in reproduction and prediction of the dis-
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Fig 10. Flowchart of statistical paraineter extraction.
P parameter vector, A Jacobtan matrix that represents the sensitivities of compact model formula

to each parameter, rcovaniance matrix of E-T data, w: weighted function to normalize the
difference of the current/capacitance which depends on the device geometry and the bias condition.
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Fig 12. Lg dependence of ad,,-Id, correlation coefficient.
Drastic shift from negative to positive during shorteningLL is well reproduced using statistically

extracted parameters.
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Fig. 1. Lg and bias voltage deperdence of Jd1 (a) rFET, (b) pFET.

Monte Carlo simulation using statistically extracted parameters reproduces the reasurement data
well.

tribution ofelectrical properties. Anew statistical parameter ex-
traction method has been developed that is able to reflect pa-
rameter correlations and is easy to use. Only three parameters
are enough to reproduce I-V fluctuations including correlations.
Our total methodology enables a quite accurate evaluation of
circuit performance and yield estimation before mass produc-
tion.
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