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Abstract- The workhorse of today's TCAD is the drift-
diffusion (DD) model, which in the special formulation of the
impedance field method has been used for a long time for noise
calculation, but there has been much debate over its noise source.
The derivation of the DD noise model from the Langevin-type
Boltzmann equation (LBE) is discussed in detail and it is shown
that the DD noise source should be local in the real space, white
and given by the power spectral density (PSD) of the velocity
fluctuations at zero frequency calculated under homogeneous
bulk conditions in analogy to the mobility. The white noise source
and frequency independent mobility of the DD model reflect the
neglect of certain acceleration terms in the LBE. By comparison
of solutions of the LBE with and without these terms it is found
that the DD model works well up to frequencies of about 1OOGHz
in silicon devices. Comparison of solutions of the LBE and DD
model for different definitions of the noise source shows that
the best device results are obtained with the PSD of the velocity
fluctuations calculated under bulk conditions. Use of the Einstein
relation to calculate the noise source for nonequilibrium, as is
often done, leads to an underestimation of noise. While the DD
model delivers good results in sub-micron devices, it fails in very
small devices resulting in spurious super shot noise. Based on
the LBE it is found that excess noise in devices is mostly due
to scattering of cold or warm electrons, whereas hot electrons
contribute little in the absence of electron-hole pair generation.

I. INTRODUCTION

Electronic noise due to scattering, trapping or generation
of charge carriers within a device leads to fluctuations of the
terminal currents or voltages and cannot be avoided, because it
is fundamentally linked with charge transport [1]-[6]. These
random events degrade the performace of analogue circuits
and limit, for example, the sensitivity of RF receivers [7].
Therefore, electronic noise has to be taken into account during
the design process of an RF circuit [8], [9]. To this end,
compact models have been developed, which allow to describe
the electronic noise produced by bipolar and MOS devices
(e.g. [10]-[13]). A more detailed approach to noise simulation
is based on device simulation, where either the drift-diffusion
(DD) or hydrodynamic (HD) model is solved (e.g. [14]-[22]).
The well-known impedance field method can be derived from
the DD model [14]. The most detailed noise models in the
framework of semiclassical transport theory are based on the
Boltzmann equation (BE), which is often solved by the Monte
Carlo (MC) method (e.g. [23]-[27]). An alternative method
is based on a spherical harmonics expansion (SHE) of the
BE [28], [29], and it allows to calculate solutions directly
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Fig. 1. Terminal current at zero bias for an N+NN+ structure.

in the frequency domain avoiding many of the problems
encountered by MC simulation [30].

Before going into the details of numerical noise simulation,
noise is defined more precisely. A fluctuation is the deviation
of a quantity from its expected value in the time domain [3],
[31]. In Fig. 1 an example is shown for a ID N+NN+ silicon
structure (lOOnm of a donor concentration of 5 1017cm-3
followed by 400nm of 2 1015cm-3 and again lOOnm of
5. 107cm-3) biased at zero volts. The system is stationary and
the expectation of the terminal current is zero. Nevertheless,
the terminal current is not zero and fluctuates around zero
due to particle scattering within the device. Since a particle
carries a charge, it induces a displacement current, which
appears at the terminals and is proportional to the particle
charge and velocity. Thus, a change in the particle's velocity
due to scattering leads to a change in the terminal current.
The terminal current due to the moving electrons within the
N+NN+ structure can be evaluated by the Ramo-Shockley
theorem [32], [33]. In the ID case it reads for a material with
a position-independent dielectric constant and stationary bias
conditions

1(t) = J d (1)
Npar

q zvi ,
i=i

where q is the positive electron charge, L the length of the
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Fig. 2. PSD of the current fluctuations at zero bias for an N+NN+ structure.

device, A its area, j the particle current density, Npar the
number of particles within the device and vi the velocity of
the ith electron. A generalization of this theorem to the multi
dimensional case can be found in Refs. [34], [35].
A current fluctuation is defined as 6I(t) = 1(t) -E{I},

where E{} indicates an expectation. The fluctuations are
characterized in the stationary case by their autocorrelation
function (ACF)

I0I (T)= E{6I(t + T) 61(t) } (2)
In engineering it is often more convenient to work in the
frequency domain and the frequency dependence of noise is
given by the one-sided power spectral density (PSD), which
is the Fourier transform of the ACF

SII (w) = 2 pII(T) exp(-iWT)dT,
-00

not be confused. Other microscopic noise sources are particle
trapping and generation of electron-hole pairs. Microscopic
noise sources can be fully accounted for on the level of the
BE, whereas macroscopic models like thermal or shot noise
are often only approximations.

In the next part the semiclassical noise theory is outlined
for the stationary case. Extension to the cyclostationary or
quasiperiodic case is possible by the means presented in
Refs. [36]-[38] and has been demonstrated in Ref. [30].
Many particle effects such as the short range electron-electron
interaction or the Pauli exclusion principle are not included
in this investigation (see for example: [3], [4], [39]). From
semiclassical noise theory the DD noise model is derived and
its noise source is discussed in detail. In the third section the
DD approximation is investigated under homogeneous bulk
conditions and in the fourth part for devices.

II. THEORY

The theory of semiclassical noise was developed in the
sixties [1], [3], [4]. An elegant way to formulate the theory
is the Langevin-type BE (LBE), where a stochastic force
((r, k, t) is added to the BE (only the case for electrons in
unstrained silicon under stationary bias conditions is shown)

(4)
O

qETVkf + VTVrf S{f}I,=
where f,(r, k, t) is the distribution function, E(r, t) the
electric field, t the time variable, r a location in the real space,
k the wave vector, v, (k) the group velocity, v the valley index,
and S the scattering integral for a nondegenerate electron gas
of non interacting particles [3], [25], [40]

(3)

where the angular frequency w = 27f is assumed to be
positive. SII(27f)df is the noise power in the interval df
at frequency f. The PSD of the short-circuited N+NN+
structure is shown in Fig. 2, and the noise is white below
about 100GHz neglecting 1/f noise. At about 3THz a plasma
resonance occurs [26], which is due to the capacitance of the
lowly doped region and the inductive effect of the acceleration
of the electrons. This is reflected in the time dependence of the
terminal current (Fig. 1), of which the strongest fluctuations
occur in the THz range. The microscopic source of the noise
is particle scattering by phonons and impurities, which is
called diffusion noise. Since the system is in an equilibrium
state, the noise can be calculated by a fluctuation-dissipation
theorem [3] (here Nyquist theorem) SI, = 4kBTR{Y}, where
kBT is the thermal energy and Y the small-signal admit-
tance of the N+NN+ structure. This device related noise is
called thermal noise. It is a macroscopic manifestation of the
microscopic diffusion noise at equilibrium and it is a good
approximation for noise in resistors even if a current flows.
Microscopic diffusion noise can also generate macroscopic
shot noise (SI, = 2qI) under non equilibrium conditions.
Microscopic and macroscopic noise sources should therefore

S{f} Qs EXsvv6
(2w)3 ZJ Sv,v(r, k,k')fz,'(r, k',t)

Sv,(r, ',kk)fk(r,,t)d3k' .(5)

The transport model is based on the analytical electron band
structure and phonon and impurity scattering models of the
Modena group [25]. An empirical correction of the impu-
rity scattering model is used to account for high doping
effects [41]. The transition rate S>,>, (r, k,k ') for scattering
from the initial state (v', k') into the final state (v, k) is
assumed to be independent of the distribution function, where
impurity scattering is screened by a fixed particle density
equal to the doping concentration under equilibrium condi-
tions for the sake of simplicity. For the same reason gener-
ation/recombination processes (and therewith 1/f noise [3])
are neglected.
The transition rate also enters the ACF of the Langevin force

(r,k'ks l t, tl

=Qs S[/,(, S v(r, kll, kc)f, (r, kc)
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+ Si,i'V (r, kc, k")fiw' (r, k/")d3k") 6(kc- kl)61,
- SV/ v(r:,kl I k) k)

- Sv,vl (r, k, klfvS l (r,k')kl(r,k) )

= S >, (r, kc, k')6(r - rl)(t - tl)
where fJv(r,Ik) is the noiseless stationary solution of the
and SS the PSD of the Langevin force, which is white
local in the real space due to the assumption of instantane
scattering [3]. The PSD of the Langevin force is fully de
mined by the transition rate and noiseless distribution funct
Therefore, the LBE does not contain any information bey
the BE, and the Langevin approach is just a well underst
mathematical apparatus to calculate noise.

The LBE is solved self-consistently with the Poisson ec
tion (PE) for the quasistatic potential. In order to calcu
noise it is assumed that the Langevin force is so small
the fluctuations of the distribution function and potential
be calculated by a first order expansion of the LBE and
around the steady state [15], [16]. The LBE is solved by a
terministic numerical approach based on spherical harmon
finite differences, box integration and the maximum entr
dissipation principle [30], [42], [43]. The CPU efficient adji
approach [44] is used to calculate the corresponding Gre(
functions similar to the case of the DD model [18].

Langevin-type DD and HD models are obtained from
LBE by derivation of balance equations for the respec
moments of the distribution function [19], [20], [41], [4
[48], which are given by

x(r, t) (2)3 ZJX(r,k)fv(r,k, t)d3k = n(X)k
where n is the particle density, which is obtained for X
with (1) = 1. The corresponding balance equations are
tained by multiplying the LBE with the microscopic quan
Xv (r, k) and integration over the k-space

2 6
ZJXv (r,k){LBE}d3k

which leads without any approximations to

ax q Tx
at n-lhVkX E+VT(n (XVk) n (vTVrX)^k

+n w{x} k = (9)
The scattering integral for balance equations is defined as

TY 7 f -V Is

6

x E X SV/,,>(r, k, k) [XI,(r, k) -Xr, V (kl)] d3kl , (10)
v'=l

and the moments of the Langevin force read

2 6

) (22r)3 ZJE XI, (rk),(rk t)d3k . (11)
The DD model consists of two balance equations [49]. The

first one, the continuity equation is derived with X, (r, k) = 1

an + VTj = o,
at r

where the particle current density is given by

j = n(v)k ,

(12)

(13)

and no Langevin force occurs, because for the sake of brevity
only particle number conserving scattering processes are con-
sidered.
The constitutive equation for the particle current density is

based on the vector mean free path A,(r, k) [50], which is
defined in such a way that the scattering integral of the balance
equations yields exactly the group velocity [51], [52]

v = W{}. (14)

With X = A the balance equation for the particle current
density is obtained without any approximations [41], [47],
[48], [53]

hKVkATE + (Tn vAT)
=A

T

fnlvTVrVAT1)k
=D

+ j = (j , (15)

where ,u, D are the mobility and diffusion tensors, which
in the absence of a magnetic field are usually symmetric,
and the time derivative has been neglected for the sake of
brevity'. Due to the definition of the vector mean free path,
the scattering integral of the LBE is solved exactly and the
macroscopic relaxation time approximation usually invoked to
derive balance equations [46] is avoided. The Langevin force
of the particle current density reads

2 6

(8) ) (27)3 Z]V= r,) (,ktd (16)

Thus, the Langevin force is directly evaluated for the balance
equation of the current density (velocity) and this scheme
is called velocity fluctuation scheme. In the acceleration
fluctuation scheme on the other hand the Langevin force is
evaluated for the time derivative of the current density (X =

v) [19]. Since the latter scheme requires the macroscopic
relaxation time approximation, it violates basic fluctuation
dissipation theorems in contrast to the velocity fluctuation
scheme [41], [54]. Furthermore, current fluctuations 6j and the
corresponding Langevin force (j are two distinct quantities,
which are related by (15) and which are in general not equal.

'The time derivative can be eliminated exactly by a more general definition
of the vector mean free path (cf. Refs. [41], [47], [48]).
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With the above definitions the cross correlation function for
the Langevin forces of two microscopic quantities X and Y
reads

2n(r) (XW{Y}k) + (YW{X})k
-(W{XY})k>(r -r')6(t
Sdxdy~ (r) 6(r -r') 6(t -t') ,

- t')
(17)

where all averages are evaluated with the noiseless distribution
function. The ACF for the Langevin force of the particle
current density evaluates with (14), (17) to

2n(r) (2D -(W{AAT} k)
x6(r - r)6(t -tl)
Ssjsj (r) 6(r - r/) (t- t') (I18)

homogeneous bulk conditions, where the system can be pa-
rameterized by a single driving force (in addition to the local
doping concentration, lattice temperature etc), which is given
in a device by the gradient of the imref.

While many experimental results are available for the mo-
bility, only few are known for the noise source (e.g. [23])
and simulation has to be used to fill this gap. The noise
coefficient of the DD model is determined under homogeneous
bulk conditions (i.e., all dependences on the position in real
space are neglected in the LBE) for a constant electric field Eo
consistent with the procedure for the evaluation of the mobil-
ity. In this case the particle current density can be replaced by
the drift velocity (Vd = (v) = j/n) and the balance equation
for the velocity fluctuations, which corresponds to (15), reads
for a single electron

Since the PSD of the Langevin force of the LBE (6) is local
and white and the procedure to derive the balance equations
is local in real space and time, the PSD of the Langevin force
of the current does have these properties as well. Furthermore,
the transport coefficient (mobility) is local in real space and
time (see 15), because it is derived by the same procedure2.
Since (W{X}peq = 0 for equilibrium due to the principle of
detailed balance [51], the PSD of the current Langevin force
is under this condition reduced to [41]

Ssqsj 4nD = 4nfUT (19)

and the microscopic Nyquist theorem is recovered, where the
Einstein relation holds exactly under equilibrium conditions
as can be shown by integration by parts. Since the noise
source is proportional to the diffusion constant, this is called
diffusion noise, which is due to particle scattering within the
conduction bands. Since the equilibrium distribution function
is given by the Maxwell-Boltzmann distribution, the noise
source and the mobility are only determined by local quantities
(doping, lattice temperature etc) and can be determined under
equivalent homogeneous bulk conditions.

In order to derive a tractable set of equations, the balance
equation for the particle current density has to be simplified.
The mobility tensor is assumed to be isotropic and is replaced
by a scalar. The complete diffusion term [all terms in the
square brackets of (15)] is approximated by ,UUTVrn, where
the Einstein relation is assumed to hold under nonequilibrium
conditions. This yields

6Vd + 6,Eo = (v (21)

and
SVd+±IEo Vd+±Eo (v(v (22)

where = S>j>j/n is the single particle PSD for the
Langevin force of the velocity. In principle it is possible to
evaluate S with (18) by solving the LBE. Although this
noise source is exact, the noise calculated by the DD model
would contain a large error [21]. This is due to the DD
approximation, which suppresses mobility fluctuations under
bulk conditions. In the DD model it is assumed that the
mobility depends on the modulus of the gradient of the imref
,u =,u( Vrq), which is a constant under bulk conditions
and equal to the (negative) external electric field. Therefore,
the DD mobility does not fluctuate under bulk conditions
in contrast to the exact one, and the PSD of the velocity
fluctuations erroneously equals the PSD of the Langevin force
in the framework of the DD approximation

SIDD I

SVIdVd= SiJ(v(v (23)

Thus, if the exact PSD of the Langevin force were used,
the current noise would be grossly overestimated. In order
to avoid this, the exact PSD of the Langevin force is replaced
by a modified one, which is equal to the PSD of the velocity
fluctuations. Thus, also in the case of nonequilibrium the noise
source of the DD model is given by the PSD of the velocity
fluctuations evaluated under equivalent bulk conditions [5],
and it remains local in the real space

j +I(nE + UTVrn) = j- npV,q = (j, (20)

where ,u is the longitudinal electron mobility, UT the thermal
voltage evaluated at the lattice temperature, and b the quasi
Fermi potential or imref [55]. The dependence of the mobility
on the distribution function is evaluated under equivalent

2Noise sources, which are nonlocal in real space and time, are obtained by
using nonlocal moments X, (r, r', k, t, t') in (9) and additional integration
over r' and t' (convolution). But this leads immediately to nonlocal transport
coefficients [3]. Use of nonlocal noise sources with local transport coefficients
is inconsistent and results in violation of fundamental relations (e.g. Nyquist
theorem).

Se j = nsvdvd rSev -
(24)

I is the identity matrix and vl the longitudinal component
of the velocity. The approximation is consistent with the
approximation of the mobility tensor by a scalar in the DD
model. This scheme, which can be generalized to the case
of the HD model [20], reduces to the exact one in the case
of equilibrium, because in this case the driving force is zero
and therewith the impact of the mobility fluctuations vanishes.
The mobility and modified noise source of the DD model are
generated consistently with the LBE under homogeneous bulk
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Fig. 3. PSD of the longitudinal velocity fluctuations Svlvl at room temper-
ature for three electric fields in (100) direction and a donor concentration of
1017 /cm3.

conditions and stored in lookup tables for later use by the DD
device simulator [56].
The PSD of the velocity fluctuations calculated under ho-

mogeneous bulk conditions should not be confused with the
PSD of the velocity fluctuations in a device. The latter quantity
is nonlocal in the real space and contains already part of the
kinetics in the real space, which are also accounted for by
the DD model leading to double counting of these effects if
the device PSD of the velocity fluctuations is used as a noise
source as proposed in Ref. [57]. Moreover, the nonlocal PSD
does not reduce to the exact noise source (18) in the case of
equilibrium, which is a prerequisite for the Nyquist theorem
to hold for the terminal current noise of a device. In addition,
the comment in footnote 2 applies.

In the balance equation for the particle current density
(20) the time derivative has been neglected, as this is usually
done to avoid plasma oscillations, which cause numerical
problems [55]. Due to this approximation, the PSD of the
velocity fluctuations of the DD model SDD is white in contrast
to the PSD obtained from the LBE. The noise source of the
DD model is therefore given by the low-frequency limit of the
LBE PSD [58]. The validity of this approximation is discussed
in the next section.

III. BULK RESULTS

The PSD of the velocity fluctuations, which is the noise
source of the DD model, is shown in Fig. 3 as a function
of frequency for electrons in a homogeneous bulk system.
At frequencies above about 100GHz the PSD is no longer
white in silicon and depends on the frequency. This frequency
dependence is ignored in the DD model and could in principle
be included, but it would require at the same time the inclusion
of the frequency dependence of the mobility (Fig. 4). The
frequency dependence of both quantities is rather complex and
not captured by a single relaxation time, which is sometimes
used to model these effects within the DD approximation. As
mentioned above, the frequency dependence of the mobility

2

101 -

100

--- 1OOkV/cm
- --- 10kV/cm

- 1 kV/cm

10° 101 102 103
Frequency [GHz]

Fig. 4. Absolute value of the longitudinal AC mobility at room temperature
for three electric fields in (100) direction and a donor concentration of
1017/cm3 (reprint from Ref. [58]).

leads to numerical problems, and the frequency dependences
of the noise source and mobility are therefore consistently
neglected.
The PSDs of the velocity fluctuations and of the correspond-

ing Langevin force are shown in Fig. 5 together with the result
of the Einstein relation (19) as a function of the electric field.
At low fields, where mobility fluctuations do not matter and
the particle gas is close to equilibrium, all three PSDs are
equal. At high electric fields, on the other hand, the PSD
of the Langevin force is for all important cases much larger
than the PSD of the velocity fluctuations. Use of the PSD of
the Langevin force as noise source in the DD model would
therefore lead to strong overestimation of the device noise.
The opposite result is obtained, if the Einstein relation is used
to calculate the noise source of the DD model as this is often
done. In addition, it can be seen that the noise source of the DD
model (Se, ,) decreases at high electric fields. Only at very
high doping concentrations and intermediate fields does an
increases of the noise source occur. In most cases, hot electrons
therefore produce less noise than cold or warm ones [59].

IV. DEVICE RESULTS

The time derivative neglected in the DD model [cf. (20)]
corresponds to an acceleration term. The impact of this omis-
sion on the noise of the N+NN+ structure of Fig. 1 is shown
in Fig. 6 based on the LBE, where the simulations have been
performed with and without the corresponding acceleration
terms. Neglect of the acceleration terms modifies the results
only at frequencies above 100GHz similarly to the bulk case
(Fig. 3).

Results of the DD model based on the different noise
sources (Fig. 5) are shown in Fig. 7 for the terminal current
noise of the N+NN+ structure together with solutions of
the LBE. As expected, the exact PSD of the Langevin force
leads to an overestimation of the noise for the nonequilibrium
case, whereas the Einstein relation underestimates it. Good
agreement of the LBE and DD model is obtained in the case
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Fig. 6. PSDs of the terminal current fluctuations for the 400nm N+NN+
structure of Fig. 1 at room temperature for a bias of 0.0 and I.OV and current
flow in (100) direction based on the LBE with and without the acceleration
terms (AT).

of the PSD of the velocity fluctuations. Therefore, the PSD of
the velocity fluctuations is used in the remaining part of this
paper as noise source for the DD model and in a modified
version for the HD. In the case of the N+NN+ structure
(Fig. 7) the results of the HD model are almost equal to the
DD data and not shown [21]. Similar good results are obtained
for holes and not repeated here [21].

Since the DD and HD models are approximations of the
LBE, it is doubtful, whether they will yield reliable results in
small devices or not. To test this, a Si NPN BJT with a 50nm
thick base has been simulated (Fig. 8). The collector current
noise due to electrons should be full shot noise (S7IC
2CXFanoqIc with avFano = 1) below high injection. The relation
between the current noise and full shot noise aFano is called
Fano factor. In the case of the LBE the Fano factor is one

below high injection (Fig. 9), whereas the HD model yields a

spuriously enhanced Fano factor of 1.33 and the DD of about
3. This error vanishes with increasing base thickness. A similar

1 020

1019

1018

1017

Acc

Don

0.000 50.00 100.0 150.0 200.0 250.0

x [nm]

Fig. 8. Doping profile of the Si NPN BJT with a 50nm thick base.

error occurs in the case of MOSFETs with very short channels
in the subthreshold region and reveals the limitations of the
macroscopic models.

In Fig. 10 the local contribution to the electron collector
noise is shown for low injection. The noise originates from
the left-hand side of the potential barrier (base/emitter region,
where the minimum of the conduction band edge is at 72nm)
consistent with full shot noise, which is due to the random
injection of independent carriers over a potential barrier [10].
The subsequent heating of the carriers in the base/collector
space charge region and hence strong particle scattering has
no impact on the terminal current noise, because electrons
scattered in this region cannot return to the emitter. The
electron temperature at the peak of the current noise generation
(68nm) is even below the lattice temperature (277K). This
result again confirms that excess noise is in most cases not due
to hot electrons (but nevertheless due to noneqilibrium effects).
This is consistent with results for N+NN+ structures [59]
and MOSFETs [60]. The decrease in the Fano factor at high
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the failure of the DD model. In addition, it has been shown
that excess noise is mostly produced by scattering of cold
and warm electrons and not by the frequent scattering of hot
electrons.

U.U ~~~~~~~I I

10-6 10-4 10-2 10°
Collector current [mA/gLm2]

Fig. 9. Fano factor of the electron collector current noise for the Si NPN
BJT biased atVCE = 0.5V for room temperature and zero frequency.
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Fig. 10. Local electron collector current noise contribution, electron gas

temperature and conduction band edge for the Si NPN BJT biased at VCE =
0.5V and VBE= 0.65V for room temperature and zero frequency based on

the LBE.

injection is caused by electrostatic interaction of electrons
being injected into the base/collector region with electrons
already in the base/collector region. This leads to correlation
of the injected electrons and reduction of the Fano factor.
A comparison of DD and HD results with experimental

data for RF NMOSFETs can be found in Ref. [60] and good
agreement of measurement and simulation is obtained for deep
sub-micron devices.

V. CONCLUSION

Based on the velocity fluctuation scheme the DD noise
model has been derived from the LBE. The resultant DD noise
source is local in the real space, white and given by the PSD
of the velocity fluctuations calculated under equivalent bulk
conditions. This noise source has been shown to yield better
results than exact Langevin forces or noise sources based on

the Einstein relation. The DD model yields good results for
devices in comparison with the LBE for frequencies below
about 100GHz. Only in very small devices the DD model fails
and an overestimation of shot noise occurs. The Fano factor,
which is in this case larger than one, is a good indicator for
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