3D Monte Carlo Device Simulation of

NanoWire MOSFETSs including Quantum
Mechanical and Strain Effects

Andrea Ghetti* and Denis Rideau®
*STMicroelectronics - FTM - Advanced R&D, Via Olivetti 2, 20041 Agrate Brianza, Italy
Email: andrea.ghetti@st.com
TSTMicroelectronics, 850 rue J. Monnet, BP 16, F-38926 Crolles CEDEX, France

Abstract—In this paper we report on 3D Monte Carlo device
simulation of silicon NanoWire MOSFETs including quantum
mechanical and strain effects. The newly developed simulator
solves self-consistently in 1D, 2D or 3D the Schriodinger Eq.
for the quantum mechanical correction of the potential, while
mechanical strain effects are accounted for by an appropriate
change of the band structure. The simulation program has been
then applied to the simulation of silicon NanoWire MOSFETSs
achieving a good agreement with experimental data, demonstrat-
ing the feasibility of 3D semi-classical Monte Carlo simulation
with quantum mechanical correction for very advanced devices.

I. INTRODUCTION

In order to sustain the relentless downscaling of MOSFET
physical dimensions aimed to improve circuit performance and
cost, the ITRS roadmap forecasts sub-10nm devices by the
year 2015 [1]. It is still not clear whether conventional planar
bulk MOSFETs will meet this requirement because of the
severe short channel effects they suffer. For this reason non-
conventional MOSFETs, such as FD-SOI, double-gate (DG),
FinFET etc., are being extensively investigated. Among the
possible alternatives, NanoWire MOSFETs (NW-MOS) are
gaining increasing popularity due to their superior channel
control. This is achieved by reducing the silicon channel to
a thin wire surrounded as much as possible by the gate (see,
for example, Fig. 1). It is clear that for this kind of devices,
the real 3D geometry plays a fundamental role that must be
properly accounted for.

In addition, for such small devices, quantum mechanical
(QM) effects, and notably charge confinement, greatly affect
electrical characteristics. A boost in the performance may
come from ballistic transport, but it is still under debate when
scattering would not limit transport anymore. Finally, strain en-
gineering has become a must to further improve performance.
All these phenomena must be accurately accounted for in order
to investigate, design and optimize NW-MOS.

In the first part of this paper we present a new simulator
that accurately describes advanced devices such as NW-MOS
considering all the above mentioned phenomena. It is based
on 3D semi-classical Monte Carlo (MC) simulation that is
intrinsically suited to describe highly non-local effects and
scattering, and allows a straight forward inclusion of mechan-
ical strain through an appropriate change of the silicon band
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Fig. 1. Silicon NanoWire n-MOSFET experimentally characterized in [2] and
simulated in this work. a) partial 3D view; b) horizontal (z-normal) section;
¢) channel cross-section. L = 10nm, £, = 1.5nm, dg; = 6.5nm. Not all
dielectrics are shown.

structure. QM effects are accounted for by a correction of
the potential provided by the self-consistent solution of the
Schrodinger equation.

In the second part of the paper, we show simulation results
of silicon NanoWire MOSFETs provided by the new tool that
achieve a good agreement with experimental data, demonstrat-
ing the feasibility of self-consistent Poisson-Schrodinger based
3D semi-classical Monte Carlo simulation for very advanced
devices.

II. THE NEw MC SIMULATOR

Fig. 2 graphically depicts the interaction among the main
blocks of the newly developed simulator (named MC++).
It solves the Schrodinger Eq. (SE) and the Poisson Eq.
(PE) self-consistently with the semi-classical 3D Monte Carlo
simulation of carrier transport through an iterative procedure
[3]. The linear PE is solved using standard box methods
for the potential (V) profile frequently enough (every 2fs)
to assure time stability. The solution of the SE provides the
QM correction term (A) of the potential accounting for charge
quantization [3]. Both ¥ and A act as driving force in the
Boltzmann Transport Eq. that is solved for via semi-classical
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Fig. 2. Main blocks of the simulation program and their interactions.
Simulation start by reading an initial guess computed with conventional
programs.
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Fig. 3. Numerical solution of the 2D Schrédinger Eq. in the case of a circular
well with R=5nm. a) initial finite element mesh; b) domain map to a uniform
tensor product grid; ¢) contour plot of the energy profile; d) partial 3D view
of the energy profile.

3D Monte Carlo simulation providing carrier/pseudo-potential
profiles (n/®) to be used in the solution of both PE and SE.

In case of 3D structures, the SE is solved using a ”Quasi
3D” approach [4]: the simulation domain is cut in scveral
sections normal to the channel in which the 2D SE is solved
for. Then, a continuous 3D description of the QM charge is
recovered by interpolating the results of two adjacent sections.
This approach is valid as long as the confinement region does
not change shape, as in the case of NW-MOS [4]. The 2D
SE is solved as in [5]. Assuming a rectangular domain with
zero boundary conditions the solution can be expanded as
b(z,y) = ZZ Aggsin(klx)sin(kly). This allows to trans-
form the 2D SE in a standard eigen-value problem (computed
with highly optimized libraries [6]) involving the Fourier
transform of W, that can be efficiently computed exploiting
FFT algorithms [7]. This methodology can be applied to
arbitrary geometries, as illustrated in Fig. 3 for the case of
a circular well. First, the initial domain (Fig. 3.a) is mapped
onto a uniformly spaced tensor product grid (Fig. 3.b) needed
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Fig. 4. Validation of the numerical solution of the 2D SE in the case of a
circular well with R=5nm: squarcd wave function for the first 6 cigenstatcs.

0.10 LAL I B L B AL L 1.0
S‘ o
D, p
- 0.08 - -4 0.8 =
o )
2 ®
w  0.06 - 406 m
2 5
2 e
2 0.04 - 1043
- ®
L £
§ 0.02 Analytical T ¥ Analytical 102~
L r @®---@ this work o---o this work

OOO PR NI U NI PR U T N OO

0O 2 4 6 8 10-5 -3 -1 1 3 5

EigenState # Position [nm]

Fig. 5. Validation of the numerical solution of the 2D Schrodinger Eq. in the
case of a circular well with R=5nm. Solid line: analytical solution; symbols:
simulation. T.eft: eigenstate energy; right: first eigenstate wave function.

by the FFT algorithm. Then, the energy profile is interpolated
on the new grid. Points outside the initial domain are assigned
an arbitrary high value (Fig. 3.c,d). This assures no wave
penetration outside the original domain as shown in Fig. 4. The
accuracy of this procedure is demonstrated in Fig. 5 comparing
quantitatively the numerical and analytical solution for the
same case of Figs. 3, 4.

Both physical and phasc spaccs arc discrctized with a
tetrahedral mesh. This allows for the greatest flexibility in
describing device geometry (see Fig. 1) and makes the free-
flight equations linear [8], i.e. easy and fast to be solved. Fig. 6
shows two discretizations of the Brillouin Zone (BZ) used to
describe the silicon anisotropic (full) band structure (BS). For
bulk material (i.e. no strain) the irreducible wedge (IW, 1/48 of
BZ) is enough (Fig. 6.2). Whereas, for a generic strain tensor,
a larger portion of BZ must be used due to symmetry loss
(for convenience we chose to store the entire BZ, see Fig. 6.b).
Silicon band structure is computed with the Empirical Pseudo-
potential Method [9] that accounts for strain-induced band
structure distortion. The Density of State (DOS) is computed
by directly calculating the area of the equi-energy surfaces,
that are also stored in memory to speed up the determination
of the state after scattering [8].
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Fig. 6. Silicon band structure discretization: a) BZ irreducible wedge suitable
for bulk material; b) full BZ (only half is shown) used for simulation with
strain. Color contours refer to the energy of the lowest electron (a) and
heavy hole sub-bands (b). Heavy hole sub-band has been computed under
a 1GPa <110> uniaxial compressive stress that causes the distortion of the
first contour level.
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Fig. 7. Simulated electron bulk mobility (CI/B) in comparison with

calculation of [12] (o/e) for undoped silicon under biaxial strain. Closed/open
symbols refer to in-plane/out-of-plane mobility.

Scattering mechanisms are assumed to be isotropic and to
depend on strain through the variation of the DOS. Scattering
mechanisms include: elastic acoustic phonon scattering, in-
elastic optical phonon scattering, ionized impurity scattering
(isotropic model of [10]), impact ionization. Scattering against
an interface is treated empirically as a mixture of reflecting and
randomizing scattering [10]. Phonon scattering for electrons
and holes has been extensively calibrated to reproduce a large
variety of experiments including strain dependent mobility
(Fig. 7 and [9], [11]).

III. NANOWIRE 3D MC SIMULATION

Using MC++ we simulated the NW-MOS reported in [2]
and shown in Fig. 1. The actual iteration scheme is shown
in Fig. 8. The simulation starts by reading an initial bias
profile computed with conventional QM, i.e. density-gradient,
hydrodynamic simulation (QM HD). Then, the Poisson and
Schrodinger equations are solved self-consistently keeping
constant the pseudo-potential found in the initial profile. This
step has been introduced to provide a better initial guess for the
potential QM correction (A’ in Fig. 9) than the one provided
by QM HD (A”), thus speeding up convergence. Please notice
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Fig. 8.  Schematic representation of the iteration scheme. Convergence is
reached after a few iterations.
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Fig. 9. Evolution of the potential QM correction during iterations. A° is
the initial profile computed with conventional density-gradient hydrodynamic

simulation (QM-HD). Al is the first guess provided by the self-consistent
solution of the Schrodinger-Poisson Eq. (S+P).

in Fig. 9 that A’ significantly deviates from A. Inciden-
tally, this questions the accuracy of the standard density-
gradient approach for 2D/3D cases. One note, indeed, that
density-gradient is usually calibrated to reproduce Poisson-
Schrodinger results in 1D. Next, the real iteration loop is
entered by performing a Monte Carlo-Poisson self-consistent
simulation until a steady-state solution is reached. This is
necessary to get a smooth solution for the potential and carrier
pseudo-potential to be used in the Schrodinger Eq. solution to
update A. Notice that any “noise” on ¥ and ® directly impacts
A, and, if it is too large, may lead to unphysical results. The
loop is then closed by solving the Schrodinger Eq. as explained
in the previous section. As it is possible to see in Fig. 9, only
a couple of iterations are needed to get a stable solution for
A. Finally, once a stable solution for A has been obtained,
a longer Monte Carlo-Poisson loop is performed to collect
smoother statistics data.

All simulation results shown in the following have been ob-
tained with the inclusion of strain. The strain tensor symmetry
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Fig. 10. Comparison of experimental (line) and simulated (symbols) drain

current with (QM MC, l) and without (CL MC, o) QM correction. a) trans-
characteristics; b) output characteristics.

that can be inferred from the geometry of the device under
investigation exhibits a biaxial compressive component in the
plane perpendicular to the channel direction due to the gate
all-around. Consequently, the current flows in the out-of-plane
direction benefiting from the effect of the mechanical strain
(Fig. 7). Using the analytical model of [13] and the process
informations available in [2], the biaxial compressive strain is
estimated to be 0.5%.

Simulated drain current with (QM MC) and without (CL
MC) QM correction is compared to experimental data in
Fig. 10. A good agreement with experimental data is found
only if QM effects are accounted for, while CI. MC pro-
vides an higher current, as expected (Fig. 10). This can be
understood by looking at the electron concentration along the
channel shown in Fig. 11.a. When QM effect are accounted for
there is a decrease of the free carrier density inside the channel,
thus a smaller current, simply because quantization reduces
the number of allowed states. This effect is of particular
importance for small devices such as NW-MOS. However,
this is not the only effect due to quantization. Fig. 11.b also
reports the average velocity along the channel in the two cases.
When QM effects are accounted for, electrons attain a larger
average velocity while transiting in the channel (=+25%), thus
partially compensating the reduced charge concentration (~-
50%). This is due to the particular shape of the carrier space
distribution resulting from the inclusion of QM correction. As
shown in Fig. 12.b, QM effects push electrons away from the
interface providing the maximum concentration at the center
of the NanoWire. On the contrary, without QM correction the
maximum carrier concentration is attained at the gate oxide
interface (Fig. 12.a). Thus, in this latter case, electrons will
experience more surface scattering (as confirmed by the larger
average number of surface scattering per simulated particle),
resulting in a smaller velocity.

IV. CONCLUSION

In summary, we have presented a self-consistent Poisson-
Schrodinger based 3D MC simulator also accounting for
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Fig. 11. Simulated electron density (a) and velocity (b) averaged on a channel
cross-section as a function of the position for Vi = 0.5V, Vpg = 1V with
(QM MC, dot-dashed line) and without (CL. MC, solid line) QM correction.
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Fig. 12.  Comparison of the electron concentration provided by CL (a) and
QM (b) MC simulation for Vg = 0.8V, Vps = 0.2V. Only 1/4 of the
device is shown (drain end of the channel).

strain-induced effects. It has been exploited to simulate NW-
MOS providing good agreement with experimental data.
Therefore this tool represents a reasonable trade-off between
accuracy, flexibility and usability, and can be used to investi-
gate and design nanoscale devices.
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