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Abstract- An analytical model for the low-field bulk
electron mobility tensor in strained Germanium is pre-
sented. The model includes the effects of strain-induced
splitting of the conduction band valleys in Germanium
and the corresponding inter-valley scattering reduction as
well as temperature and doping dependence. Bulk mobility
values larger than 2.5 times the strained Silicon values has
been predicted. The results obtained from the model have
been verified using Monte Carlo simulations.

I. INTRODUCTION
The introduction of stress in the channel is a well adopted

technique for increasing the carrier mobilities in Silicon.
Recently, however, the possibility of utilizing Germanium as
a channel material [1] [2] [3] is being explored for the
next generation CMOS technologies. This interest stems from
the significantly higher carrier mobilities in Germanium in
comparison to Silicon. In this work, we have investigated the
bulk electron mobility in strained Germanium using Monte
Carlo simulations and extended a previously suggested an-
alytical low-field mobility model for strained Silicon [4] to
calculate the mobility tensor in Germanium as a function
of a general stress tensor. The present model is applicable
for all stress/strain conditions for which the L-valleys are
dominantly populated. The model includes valley splitting for
a given strain tensor, the effect of inter-valley scattering, and
the doping and temperature dependence.

II. STRAIN EFFECTS ON GERMANIUM BAND STRUCTURE

In Germanium the conduction band minima consist of
four degenerate pairs of L-valleys located along the (111)
directions as shown in Fig. 1. Application of strain lifts the
degeneracy of the valleys. The valley splitting for the jth valley
is calculated using linear deformation potential theory [5]

A6E =dTr(F)+ at E ai

where ai is a unit vector of the jth valley-pair minimum and
aT denotes the transposed vector. Ed and Bl are the dilatation
and shear deformation potentials, respectively for the L-valleys
and £ is the strain tensor expressed in the principal coordinate
system. The values of Bd and Bl were identified as -4.43 eV
and 16.8 eV [6], respectively.

For uniaxial compressive strain along the [111] direction, the
L-valleys located along the [111] direction (L1) are lowered

Figure 1: Conduction band structure of unstrained Germanium
with constant-energy surfaces for the four equivalent L-valley
pairs.

Stress (GPa)

Figure 2: Effect of uniaxial stress on valley splitting (Aij =
A4j) A4) for stress (T) along [111], [112] and [110]
directions. Thkl denotes the direction of the applied stress.

in energy, while the remaining three valley pairs (L2, L3, L4)
move up in energy and remain degenerate. By this effect, the
overall effective mass in the (111) transport plane is lowered
and inter-valley phonon scattering is reduced, which results
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in a mobility enhancement. Fig. 2 shows the valley splittings,
Aij , calculated using (1), between initial valley i and final
valley j, as a function of stress along [111], [112] and [110] U[iii]
directions. It is observed that for stress along [112] direction,
the valleys split into four different energy levels. The figure
also indicates that uniaxial stress along [111] direction is most
effective in splitting the L-valleys.

III. MODELING

The anisotropic electron mobility tensor for strained Ger-
manium is calculated in the same manner similar proposed
for strained Silicon [4]. The electron mobility u(i)tr for the
th conduction band valley in strained Germanium can be
expressed as a product of a scalar mobility, ,u, and the scaled
inverse effective mass tensor, T(i).

i$n,str(NI, A\ (C)) ^ -m1,u * Tm(i

/3 . L

1 + (/3- 1) h(i) + 3

(2)

(3)
.1)

The scalar mobility is a function of the doping concen-
tration, NI and the strain induced valley splitting,AE(i). It
is calculated taking into account the momentum relaxation
times due to acoustic intra-valley scattering and inter-valley
scattering between equivalent valleys (g-type) and inter-valley
scattering between non-equivalent valleys (f-type scattering),
and impurity scattering. The effect of the different scattering
mechanisms on the total mobility is estimated by Matthiesen's
rule. Symbols ,1L and ,1LI signify the lattice mobility and
the lattice mobility including the effect of impurity scatter-
ing, respectively. The parameter /3 depends on the mobility
enhancement factor, f through

1
/3-
-1
-1L

1
/3-
1
/2-
-1

1
/3-

/6-

1

0

2)

I

-1

1

Ii

u[ll]i=_
_l

N/-6

1

3

1

2

-1
/3-
1

/6-

1

0

N/2)

1

0

(21
v3//

(6)

The inter-valley scattering rate is a function of the strain-
induced splitting of the valleys, and lattice temperature, T,
and is expressed by a dimensionless factor h(i).

g(Aabs) + g(Aabs) + eWop [g(Aems) + g(Ae1s)]
- ~~~2[g(-Wop) + r (32)]

abs AC CA WOP
kBT

AkBT)_ AEM

Wop kBopt
kBT

(7)

(8)

(9)

(10)

The function g is defined as

V z>Oe- z
. (32)

e-e r(32:
(1 1)

-z) V z < 0

/3= f
Tnc
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(4)

The mobility enhancement factor is defined as the ratio of
the saturation electron mobility in the transversal valleys of
strained Germanium to the unstrained mobility. The transversal
(mt) and longitudinal (iml) effective masses for the ellipsoidal
L-valleys in Germanium mt = 0.081 and ml = 1.588, are
more anisotropic than those of Silicon.

The scaled inverse effective mass tensor for the jth L-
valley in Germanium, m(i1 can be computed using the rotation
transformation matrix [7] as follows.

mi UT nmc O

0

0 0

Tn- 1 0

0 Tl-1

(5)

Here hwopt denotes the phonon energy. F(3/2) = /2 and
](3, -z) denotes the incomplete Gamma function. The total
mobility can then be computed by taking the weighted average
of the electron mobility tensor for the jth valley pair, ,Unstr
with the corresponding valley population, p(i).

tot = , p(i .
- (~'no Z llPn,str~

n(i)

p( str

n(') = N(i) exp [Ac 1str c ex -kBTJ (12)

Here n(') is calculated for non-degenerate doping concentra-
str~~~~~~~~~~~~~~itions, using Boltzmann statistics with N(i) as the effective

density of states. In contrast to strained Silicon, the mobility
tensor for strained Germanium in (12) is non-diagonal in the
principal system due to the non-diagonal nature of the scaled
inverse effective mass tensor in (6).
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IV. RESULTS AND DISCUSSION
Monte Carlo simulations using [8] were performed and

results were compared with those obtained from the analytical
model. The Monte Carlo simulations delivered an unstrained
value of bulk electron mobility of approximately 3850 cm2/Vs
which is close to previously reported values [9] [10].

Fig. 3 shows the variation of the in-plane electron mobility
in uniaxial compressively stressed Germanium in the (111)
plane as obtained from Monte Carlo simulations. It can

90 8000

Stress (GPa)

0 Figure 4: Electron mobility components in (111) plane
versus uniaxial compressively (along [111]) stress at room

temperature. MCII indicates the isotropic in-plane mobility,
while MCI denotes the out-of-plane mobility.
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Figure 3: Variation of electron mobility in the (111) plane with
the in-plane angle for -1 GPa stress along different directions,
at room temperature. Stress directions are represented as: [111]
(solid), [112] (solid circle), [110] (dashed) and [111] (solid +).

be clearly observed that uniaxial stress along [111] deliver
the highest mobility which is isotropic in the (111) plane.
For uniaxial stress along the in-plane directions, the mobility
is anisotropic and the enhancement is comparable to that
obtained from [111] uniaxial stress.
The computation of the diagonal and non-diagonal com-

ponents of the mobility tensor in the analytical model re-

quires the calculation of the strain-induced valley splitting.
The components of the strain tensor needed to evaluate the
splitting for the case of uniaxial stress applied along a general
direction can be obtained as follows. We adopt a coordinate
system (x', y', z') in which the stress tensor has only one non-

zero component, (7 / The stress tensor from this coordinate
system is transformed to the principal coordinate system using
the transformation matrix [11]. The strain components in the
principal system are then obtained by inversion of Hook's law.
After the mobility tensor is obtained in the principal system,
the mobility along a particular direction can be calculated
from (12) by taking the projection of the tensor in that
direction.

Fig. 4 and Fig. 5 show the analytically calculated electron
mobility components for uniaxial compressive and tensile
stresses, respectively. Also shown for comparison are the
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Figure 5: Electron mobility in (111) plane versus uniaxial
tensile (along [111]) stress at room temperature. MC indicates
the isotropic in-plane mobility, while MC1 denotes the out-
of-plane mobility.

Monte Carlo simulation results (symbols). Fig. 4 indicates that
the application of compressive stress increases the electron
mobility in the (111) plane with the mobility value saturating
at 6900 cm2/Vs for stress values greater than -1.5 GPa. This
mobility improvement is nearly 2.8 times the enhanced bulk
mobility in strained Silicon. On the contrary, applying uniaxial
tensile stress along [111] direction results in larger out-of-
plane mobilities, shown in Fig. 5.

In order to see the effect of temperature on the mobility,
we calculated the unstrained and strained (-3 GPa) electron
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Figure 6: Electron mobility in the (111) plane as a function of
temperature for unstrained and -3 GPa (along [111] direction)
strained Germanium.

mobilities from Monte Carlo simulations for different temper-
atures ranging from 300K to 90K, as shown in Fig. 6. It was
found that the temperature dependence of both the unstrained
as well as strained mobilities can be fit using a power law
expression.

P = ,U300 (300/T)a (13)

Here U300 = 3850 cm2/Vs is the unstrained bulk mobility
at 300K and value of parameter a = 1.78 has been ex-
tracted from the Monte Carlo data. Finally, the temperature
dependence is introduced into the analytical model through
the enhancement factor f as

f = f300 (300/T)3 (14)

where f300 is the mobility enhancement in unstrained Germa-
nium at 300K. The values of f300 and Q were chosen as 1.79
and -0.12, respectively. The variation in lattice temperature
also affects the mobility through the inter-valley scattering rate
(Eq. (7)-(10)) and the valley populations (Eq. (12)). Fig. 7
shows a comparison of the mobility components in the (111)
plane for increasing level of compressive stress along [111]
direction at lattice temperature T = 200K, as obtained from
Monte Carlo simulations and the model. It can be seen that
the agreement is very good.

V. CONCLUSION
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Figure 7: Electron mobility in the (111) plane versus uniaxial
compressive stress along [111] at 200K. MCII indicates the
isotropic in-plane mobility, while MCI denotes the out-of-
plane mobility.

agreement with MC simulations for both uniaxial compres-
sive and tensile stress conditions. The model is suitable for
implementation in TCAD device simulators.
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