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Abstract- We report Monte Carlo simulation results that show
position-dependent velocity oscillations and length effects in
semiconducting single-walled zig-zag carbon nanotubes shown in
Fig. 1. The simulations show velocity oscillations with Terahertz
frequencies, which approach phonon frequencies; and velocity
values reaching 7x107 cm/s. Simulations also show that average
velocity overshoots and then decreases as the tube length
increases. Quantum effects due to the finite length of the tubes, as
well as radial confinement are also included in our Monte Carlo
simulations.
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I. INTRODUCTION
Recently, carbon nanotubes (CNTs), which are graphite

sheets (graphene) rolled up into tubes of nanometer scale
diameters, have emerged as potential candidates for use in
future nanoscale electronics [1], to overcome scaling problems
associated with silicon-based devices. They offer a new design
paradigm for electronics, mainly due to their electrical
characteristics such as electron velocities approaching 1x108
cm/s at high fields, and Ix107 cm/s at low fields. This indicates
very high low-field electron mobilities: More than ten-to-fifty
times higher than that in silicon [1-3]. In addition, they are
structurally strong with a high Young's modulus in TPa range,
and form an inert surface with periodic boundary conditions,
which improves transport properties. Furthermore, CNT
electrical characteristics can be tuned for particular applications
such as rectifying and current conduction. More specifically,
the diameter and wrapping angle of a CNT determines its
electrical characteristics including metal or semiconductor
behavior. (A CNT can also be described by its fundamental
indices (n,m), which are functions of the tube's diameter and
wrapping angle.)

In this work, we investigate electron transport in
semiconducting single-walled zig-zag CNTs, using a Monte
Carlo (MC) simulator [1,2]. Our MC simulations indicate that
we have spatial velocity oscillations, which imply Terahertz
frequencies due to phonon scattering. Additionally, the
wavelengths of these oscillations appear to depend linearly on
the applied bias. Even though these calculated oscillations are
observed in space, they are likely to cause oscillations in time
due to dipole formations along the length of the tube, as is
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Figure 1. A single-walled zig-zag carbon nanotube,
with fundamental indices n,m=O, and length L.

happening in Gunn diodes. To show if this is indeed the case,
transient simulations need to be employed. Thus, our
simulation results show that CNTs may open new paradigms in
voltage-controlled oscillators, and RF designs in long-wave
infrared.

Our calculated MC results also show that average CNT
electron velocity as a function of tube length first increases
with tube length (corresponding to the ballistic regime),
overshoots, and finally reaches its steady-state phonon
scattering-limited value for long tubes. In addition, our electric
field versus applied field curves for infinitely long tubes exhibit
negative differential velocities (NDV), similar in that respect to
GaAs, where conduction velocity of the first subband is lower
than that of the second due to differences in effective masses.

II. CARBON NANOTUBE MODEL

A. Monte Carlofor Long Tubes. The Continuum Model
To investigate the electron transport characteristics in a

semiconducting single-walled zig-zag CNT with indices of n
and m=O, we developed a Monte Carlo simulator [1,2]. Using
our MC simulator, we obtain average ensemble electron
velocities in CNTs, as a function of tube length and applied
field.

To be used in our MC simulator, we first determine the
CNT energy-momentum relations including electron and
phonon energy dispersion curves. To obtain these curves, we
use graphene's energy spectra, calculated using a tight binding
model. Since CNTs are periodically confined graphite sheets
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tubes that are several times longer than the translational unit
vector. In particular, CNT length divided by the length of the
translational vector, which is equal to T3a (= 4.31 AK), gives
the number of unit cells on the tube. Therefore, it indicates how
good the continuous band approximation is.

B. Finite CNT Length. Incorporating Quantization Effects
In addition to confinement around the circumference, we

also consider effects due to finite lengths of the tubes, which
lead to discretization in energy dispersion curves, as shown in
Fig. 2b. For a zig-zag tube, length of the translational vector is
roughly 4.31 A', which is the distance between two parallel
sides of the hexagon that forms the graphene. Therefore,
maximum electron momentum is equal to 21 (pi) over this value,
which is approximately 0.74 A'-'. Furthermore, minimum
momentum step is related to the length of the tube, which is
221/L. Figure 2 shows the steps we have for a 5 nm length tube.
We here have about eleven steps that correspond to the
approximate ratio of 5 nm over 0.43 nm. Also, for the longest
tube we simulate, which is 100 nm long, we have about twenty
times more steps. (100 nm over 0.43 nm is roughly 232.) Using
this information, we include the finite contribution of
longitudinal quantization on electron transport during our
simulations. We calculate scattering rates using the continuous
band. We have modified our MC simulator to account for the
quantization due to length in addition to circumference. In our
modified MC, electron drifts along the length of the tube until
it hits an energy barrier, like the steps shown in Fig. 2b, that
needs to be overcome to achieve higher momentum values. At
this point, we determine reflection and transmission
probabilities for this barrier using the current energy, and
barrier height. Depending on the likelihood of transmission, it
either continues gaining momentum until it hits the next step or
reflects back to negative momentum values. The longer the
CNT, the smaller the barriers become, with the reflection
coefficient approaching zero and the continuum approximation
for long tubes.

Figure 2. a) Energy dispersion relations for the first three subbands of
an infinitely long n=13 CNT. b) Discretization of the energy
dispersion curves of a 5nm long n=13 CNT (T= 4.31 A').

due to rolling into a tube, CNT spectra were obtained by
applying zone-folding methods to graphene energy dispersion
relations. We below show the resulting energy-momentum
relations for different CNT (n,O) subbands, distinguished by a
subband index, fi:

E=2j1±4cos cakx Cos<J +4cos2(16
(eV) (1)

Here, kx (or k) is the electron momentum along the tube; a
( 2.49 A) is the lattice constant of two dimensional graphite;
and y is the nearest-neighbor 21-hopping integral taken to be 3
eV [4].

The CNT energy-momentum relation given in (1) is for
tubes of infinite length. It is also a good approximation for

C. Phonon Specra and Scattering Rates
To determine the CNT phonon spectra, we use a recipe

similar to that used for obtaining the continuum model
described before. More specifically, we start from the phonon
dispersion curves of graphene. We then apply zone folding
methods to those curves, and cut slices depending on the tube's
diameter and wrapping angle. To facilitate faster computation
ofmomentum and energy values that satisfy conservation laws,
we approximate these slices using line segments.

After we obtain electron and phonon dispersion curves, we
calculate electron-phonon scattering rates, employing the
deformation potential approximation and Fermi's golden rule
[2]. According to Fermi's golden rule; scattering rate from k to
k can be written as follows:

Fr =2|V 2

(Ek Ek± P)

h
(2)

Above delta function explicitly shows the energy
conservation during absorption or emission. In addition, we
write 02 using deformation potential, as follows:
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Figure 3. Average local electron velocities on 100 nm-long CNTs
with indices of a) 13 and b) 16.

2 =£2D2Q1

2LpoELq 2

Here, D is the deformation potential taken to be 3y (= 9
eV); Q is a wavevector; p is the CNT linear mass density; Ep is
a phonon energy; and the term in brackets is the Bose-Einstein
phonon occupation number. Moreover, to calculate the total
scattering rate from k to any other state, we integrate (2) over
one-dimensional momentum space.

III. SIMULATION RESULTS
Using our Monte Carlo simulator, we first investigate the

location dependence of the CNT electron velocities as a
function of applied field. To obtain electron velocity versus
tube location statistics, we inject electrons with energies that

Figure 4. Average local a) scattering rate and b) momentum for
n=13 tube under F = 30, 60, 90 kV/cm.

are chosen from a probability density function of Fermi-Dirac
distribution. Here, electrons are launched from both ends of the
tube. Once they are in the tube, we record their position,
average energy and momentum until they exit the tube from
one end. Furthermore, to calculate average electron velocity in
a space interval, we either keep track of the net momentum
(Ak) and energy (AE) change in that interval, or the time
spent (T). Once we know these values, we calculate average

velocity in that space interval using AE hAk or ,which both

gives the same value for average velocity.

We show in Figs. 3a and 3b our calculated average electron
velocities on 100 nm-long CNTs. (In Fig. 3a, the CNT has a
tube index and approximate diameter of 13 and 1 nm. On the
other hand, in Fig. 3b, the CNT has a tube index and
approximate diameter of 16 and 1.3 nm.) Our simulations show
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We associate this with the phonon spectrum and one-
dimensional nature of the system, which results in the average
scattering rates and momentums that are shown in Figs. 4a and
4b. More specifically, Fig. 4a shows that average scattering rate
has two mixed oscillations with wavelengths of 18 nm and 22
nm, when the external field is 90 kV/cm. In addition, the peaks
of these oscillations coincide with the local average electron
velocity minimums in Fig. 3a. To understand why this happens,
we first note that the energy of an electron drifting in an
applied field of 90 kV/cm will increase by 160 meV and 200
meV after a free flight of 18 nm and 22 nm, respectively. These
energy thresholds are critical in the sense that they correspond
to energy differences sufficient enough to enable intervalley
acoustic and optical, and intravalley and intervalley optical
phonon emissions. Since the scattering rates associated with
these phonons are high, electrons are highly likely to scatter
once they have that much additional energy. Also, we know
that the energy of an electron injected into the tube is likely to
be around subband energy minimum due to Fermi-Dirac
distribution. Therefore, after a flight of 18 nm or 22 nm, they
will either scatter to subband energy minimum or higher
energies. However, due to the one-dimensional nature of the
CNT system, density of states of an electron peaks at subbands'
minima with a 1 (E-Emin) type of singularity. Thus, electrons
are much more likely to scatter to lower momentum values
where density of states peaks. This also causes oscillations in
average local momentum curves shown in Fig. 4b for 100 nm
long n=13 CNT under different applied fields. We also note
that all or most of the electrons travel in the first subband,
which eliminates the possibility to have the velocity
oscillations due to transfer of electrons from the first to the
second subband and vice versa.

In Fig. 5, we show our calculated average velocity for
different CNT lengths. It shows how the forward and backward
electron injections, initially, cancel each other out yielding an
increase in electron velocity for an increase in length. We also
have overshoots from a combination of the above mentioned
scattering mechanism.

In summary, we calculate that the one-dimensional CNT
system has velocity oscillations with Terahertz frequencies,
which approach to those of phonons. This may facilitate very
high frequency oscillators similar to Gunn diodes, opening new
paradigms for far infrared RF electronics.

100

100

Figure 5. Average velocity ofan electron on various length
CNTs with indices of a) 13 and b) 16.

velocity oscillations corresponding to Terahertz frequencies in
the frequency domain. In Fig. 3a and 3b, the highest oscillation
frequencies are roughly 27 THz and 30 THz, respectively. We
below show how we calculate the oscillation frequency for the
tube (n= 13) in Fig. 3a for an applied field of 90 kV/cm:

v 5.5xlO7cm/s
f=-- = 27 THz

A1 20x10-7cm
(4)

For the tube in Fig. 3b (n= 16), under the same field of 90
kV/cm, we have an oscillation frequency of 30 THz with the
same average wavelength as in (4), but a higher average

velocity of 6x107cm/s.
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