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Abstract—We develop a fully coupled Newton scheme for the  As a first simple, but nontrivial application of the cou-
self-consistent solution of the Schidinger, Poisson, and transport pled scheme, we develop a new hybrid model that solves
equations, which is found to be a powerful method in several v gehpdinger equation in the confinement direction and

moderate sized problems. We apply the method to a new hybrid th ¢ ted t " fi i the t "
model that solves the one-dimensional Scidinger equation in € quantum corrected transport equation in the transpor

the confinement direction and the quantum corrected transport  direction (2DEG/DG model hereafter). It is similar to the
equation in the transport direction, and study the convergence conventional density-gradient (DG) model [5]—-[7], but in our

behavior of the coupled scheme. Also, we check the validity of our model, the vertical quantum confinement is included exactly

new model using the nonequilibrium Green’s function method. the Schédinger equation, and the lateral quantum effects

are included approximately in terms of the effective quantum

potential defined for each subband. Using the proposed model,
To simulate various quantum phenomena occurring in thee simulate a silicon-based double-gate MOSFET (DGFET)

nano-scale MOSFET devices, a self-consistent solution of tevice and compare the efficiency of the proposed coupled

Schiddinger, Poisson, and transport equations is necessary [4¢heme with the decoupled scheme. Also, we assess the accu-

[3]. In the previous works, the self-consistent solution is usuwacy of the 2DEG/DG model using a more rigorous quantum

ally obtained in a decoupled manner because thedahger transport model based on the nonequilibrium Green'’s function

equation cannot be easily coupled with other equations. The(SEGF) method [1], [2]. All of these models are implemented

fore, the Schidinger equation is usually solved with a giverin our in-house device simulator NANOCAD [7].

potential to obtain its eigenvalues and eigenvectors, and outer

iterations together with the Poisson and transport equations are Il. BAsic MODELS

performed to obtain the self-consistency [1]-[3]. One of the In the mode-space approach [2], the two-dimensional

disadvantages of the decoupled scheme is its slow convergeBchiddinger equation is divided into the confinement (

rate. Moreover, we observe that it sometimes fails to convergeordinate) and transporte{coordinate) directions, and the

to a sufficient accuracy in the high gate bias condition. Schiddinger equation in the confinement direction with a
To solve these problems, we view the Sidinger equation normalization condition can be written as

as a nonlinear partial differential equation (PDE), and apply T

a fully coupled Newton scheme [4] to solve the Sitinger, [fw}‘ ]:Ei‘} =0, @)

Poisson, and transport equations simultaneously. Although

computational burden per each iteration may slightly increase

I. INTRODUCTION

compared with the decoupled scheme, the numerical error andF . = {a% ning 8% —V(z,y) + Eik(az)} V¥ (2, y) 5
required number of iterations decrease significantly. Moreover,]_. L= foo [?Zk(x y)]z dy -1 - (2
the numerical factorization of the Jacobian matrix does not ~ ™ oo LTI AT

have to be performed per each iteration because the Newtbnthe above equations, k (1, 2, 3) andli (2,..., Nsup)

Richardson (N-R) acceleration technique can be applied denote the valley and subband indexgs= V + AV is the

the coupled scheme. Therefore, the overall efficiency as wellm of the electrostatic potential enerdy)(and the SiSiO,

as the accuracy of the simulation can be improved by thend offset AV), andy and EX are the wavefunction and the
coupled scheme when it is applied to moderate sized pradnergy of the subband (k, i), respectively. The closed boundary
lems. For example, when we simulate MOSFET devices @aondition is imposed on both sides of thelomain. Instead of
two-dimension, we usually obtain the subband energies afinding «/ and EX by the conventional eigensystem solution
wavefunctions along the channel from the one-dimensioralutines, we can directly obtain them by the Newton method
Schidinger equations in the vertical direction, and calculatgith appropriate initial guesses far and EX, which is the

the transport of the two-dimensional electron gas (2DE@®psic idea of this work. In the self-consistent calculations, the
confined in the inversion layer using a semi-classical model. éguations for the different subbands are coupled to one another
this case, the coupled scheme can reduce the simulation tittne@ugh the Poisson equation.

about an order of magnitude with a much more tight error Whereas the electron density in each subband is obtained
bound compared with the decoupled scheme. from the energy dependent local density of states (LDOS)
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and their occupations in the NEGF model, the LDOS is not v v E WN &

available in the DG model. Instead, it is assumed that the % ’;i\y ‘;i‘; ;fvﬁ
transport occurs near equilibrium and the scattering process is
dominant, and the subband density) is expressed in terms - P oF
of the quasi-Fermi energyFt.) and the quantum potential % v e =
(Véi) by
Fe e
k (1) —E*(z)—VE w
R —— [EF.m) B () VQ,(@} . S e |9
B (3) N OE |oVN | 0E:
K _ 1o | n2 NE@ | e | e,
VQi (l‘) - \/N.k(a:) dzr |:2m§r ox :| Te 0N | 0Ee
i NNy 3NgpNLNy 3NgpNy 3NgpNy 3NgpNy

wherenf = gi.\/mEmkkpT/ (7h?) is the density of states for _

v - Fig. 1. Schematic of the Jacobian matrix. The total number of unknowns
Fhe 5Ubband§ in the !('th valley, aid (z) = In [1 +exp ()] s ((1 4+ 3Ngup)Nx Ny + 9N, Nx). Note that each block matrix is very
is the Fermi-Dirac integral of order zero. Note that theparse.

guantum potential is separately defined for each subband (k, i)
to include the effects of the anisotropic band structure. The the-
oretical value of the dimensionless coefficieris 3 according If we use a tensor grid ofVy x N, nodes to discretize
to the microscopic derivation of the quantum potential frothe equations, the sizes of the unknown variablés,f,
the Wigner distribution function in the nondegenerate limit [G]Eik, NE, and E;, becomeN, Ny, 3Ny, Ny Ny, 3Neub Ny,
The two equations in (3) can be condensed into one as 3 Now Ny, and 3Ny, Ny, respectively. Therefore, the total
9% Bk — EF _, [Nk . number of unknowns becoméd +3 Ngut, ) N Ny +9 Ngub Nx ).
Fe = |:ax2 YT Fy (nk )} \/]71 =0, (4) Fig. 1 shows the schematic of the Jacobian matrix. We use a
0 direct sparse matrix solver and exploit the N-R acceleration
whereb® = h*/ (2rmXkgT). The quasi-Fermi energy of eachtechnique in the Newton iteration. We use the solution of the
subband is determined by the semi-classical transport equatiwavious bias step as an initial guess, and we use the decoupled
as scheme to obtain the solution of the first bias step. The voltage
k difference between the successive steps is chosen to be 0.05
_ 9 k kaEFi k'i’ ki . . .
Ter, = 52 <Mi N, ) +3 (Pki - Pk/i/> =0, (5) V, which gives good convergence behavior.
ki We mention that the coupled scheme may lose its advantage
when it is applied to large sized problems such as the NEGF
model. Actually, we have implemented the coupled scheme for
mg ballistic NEGF model, and found that the required iteration

coupled scheme and the general properties of the 2DEG/I91".5rmjer and numerical error indeed depreasc_es s!milarly to the
model than on the calibration of the model, we use a simp"fgse of the 2DEG/DG model. But, the simulation time per each

mobility model that depends on the impurity concentration aﬁtgratlon becomes too long. Therefore, the coupled scheme is

lateral electric field, and we neglect the local transitions. Moﬂeot always beter than the decoupled scheme, but there are

accurate mobility and local transition models, however, can geny applications that the coupled scheme works better.
applied to our model.

Finally, the Poisson equation can be written as
B ) . B We simulate an ultra thin body DGFET device as shown
Fv=V-[eVV(zy)] - ¢ [p—n+NF —Ng] =0, (6) i, Fig. 2. We first show the typical convergence behavior
where of the coupled and the decoupled schemes in Fig. 3. The
n(z,y) = ZNik (z) [7/)? (x’y)]Q . @) decoupled scheme uses a variant of thg Gummel scheme [2],
o [3]. As expected, the coupled scheme gives rapid convergence
] compared with the decoupled scheme in every bias condition.
The coupled equations are solved by the fully coupled Newtfyreqver, it requires much less simulation time (it takes about
scheme to obtain the unknown variables ¢, Ef, \/NF, 80 sec in PC to obtain thép-V curve shown in Fig. 8
and El{:i as consists of 16 bias points), which is due to the reduced number
of iterations as well as the N-R acceleration.
[8]—‘ (Xq Ax = —F (x), x = x+ Ax (8) Since the vertical quantum confinement effects are relatively
Ix well known and accurately included in our model, we directly
where move on to the lateral quantum effects. To verify the validity
{ F o= [Fv fwi‘ fE}< ]_-N%{ ngi]T of the lateral quantum correction in the 2DEG/DG model, we
X

where! is the mobility of the subbangk, i), and Pk is the
local transition rate from the subbai, i’) to (k, i). Since
the focus of this paper is more on the numerical aspects of

I11. SIMULATION RESULTS ANDDISCUSSION

. (9 show several important physical quantities along the channel
Vo BfNFOBER]T direction whenVe = —0.4 V. The bias point is chosen
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Fig. 2. Schematic of the thin body DGFET structure. The device and crystf. 4. Electron density along the chann@jﬁ’i Nik (z)) predicted by

coordinates are aligned. The same bias is applied to the top and bottom gates 2DEG/DG model with different values of (line) and the NEGF model
(symbol). The lateral quantum correction becomes weaker agreases.
Whenr = oo, the lateral quantum correction vanishes.
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Fig. 3. Comparison of the convergence behavior between the coupled scheme
and the decoupled scheme. The previous bias stgpdr(creases by 0.05 V

for each bias step) are used as the initial guesses. In the coupled schdfite, 5. Subband electron densities along the channel predicted by the
actual numerical factorizations occur only at the first two or three iteration@DEG/DG (line) and NEGF (symbol) models.

because the lateral quantum effects are more significanttinthe longitudinal effective mas%.08m,), whereas those
the off state. Fig. 4 shows the electron density along tleé the valley 2 and 3 are equal to the transverse effective
x-direction predicted by the 2DEG/DG model with severahass (.19m), the magnitude of the quantum potential for the
different values of- and the NEGF model. The lateral quantunvalley 1 is smaller than those of 2 and 3. Also, we can see that
correction becomes weaker asncreases, and when= co, FE{ and E} are equal, which means that the quantum effects
the lateral quantum correction vanishes. The electron denstpng the vertical direction are same because the effective
predicted by the 2DEG/DG model with = 3 (theoretical masses in the vertical direction are same in these valleys.
value) is very close to the value predicted by the NEGH-ig. 7 shows the bias dependence of the minimum subband
model, which suggests that the quantum potential equatienergy level predicted by the 2DEG/DG model and the NEGF
reasonably takes into account the lateral quantum effeatsodel. We first increase the gate bias from -0.4 V to 0.2 V
To see the effects of the lateral quantum correction on théth the drain bias fixed to 0.05 V, and then we increase the
relative occupations of electrons between subbands, we shanain bias from 0.05 V to 0.35 V. The agreements between
the subband densities along the channel in Fig. 5. Subbahd 2DEG/DG model and the NEGF model are good for the
densities predicted by the 2DEG/DG model agree well witlbw drain bias conditions. As the drain voltage increases,
the NEGF model. Note that the difference betwe¥h and however, the two models predict slightly different behaviors.
N3 is due to the difference in the lateral quantum correctiol the NEGF model, the potential drop occurs only in the
which depends on the lateral effective mass as shown in (8fannel region because the scattering is neglected, whereas
Fig. 6 shows the subband energy levels and quantum potentthls 2DEG/DG model predicts that there exist slight potential
along the channel. Since the, of the valley 1 corresponds drops in the source and drain regions as well because of the
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Fig. 6. Subband energy levels and quantum potentials along the charifigl 8. Ip-V characteristics predicted by the 2DEG/DG model with
predicted by the 2DEG/DG model (line). Subband energy levels predicted thjferent values of- (line) and the NEGF model (symbol).
the NEGF model are also shown (symbol).

— 04 - - : IV. CONCLUSION

3 0.3 -?i/:;; ZbEGmG] leo%‘:; VO'ZV 4 In this paper, we explained a fully coupled Newton scheme
é 0.2 L 3 : ] for the self-consistent solution of the Sédinger, Poisson, and

5 <l s 1 transport equations. We verified that the coupled scheme can
|.|CJ 0-1_ increase the convergence rate, reduce the numerical error, and
S 00 improve the overall efficiency compared with the decoupled
& : scheme if the problem size is not too large. The coupled
801 scheme is applied to a new hybrid model called 2DEG/DG
@?-02 model that solves the one-dimensional Sdlinger equation in

E 03 * i the confinement direction and the quantum corrected transport
g ’ §VD=0.05~0.35V *e equation in the transport direction. The predicted internal
:;-0-4:10 '5 — (') — !'5 : 10 properties in near equilibrium conditions are very close to
s X Position (nm) those of the NEGF model. But the |-V characteristics do not

agree well with the NEGF model, which suggests that we

Fig. 7. Bias dependence of the minimum subband energy level predictedrust find out the transport equation valid at the quasi-ballistic
the 2DEG/DG model (line) and the NEGF model (symbol). The gate bias Fégime
first increased from -0.4 V to 0.2 V with the drain bias fixed to 0.05 V, and '

then the drain bias is increased from 0.05 V to 0.35 V. ACKNOWLEDGMENT
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