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Abstract— We develop a fully coupled Newton scheme for the
self-consistent solution of the Schr̈odinger, Poisson, and transport
equations, which is found to be a powerful method in several
moderate sized problems. We apply the method to a new hybrid
model that solves the one-dimensional Schrödinger equation in
the confinement direction and the quantum corrected transport
equation in the transport direction, and study the convergence
behavior of the coupled scheme. Also, we check the validity of our
new model using the nonequilibrium Green’s function method.

I. I NTRODUCTION

To simulate various quantum phenomena occurring in the
nano-scale MOSFET devices, a self-consistent solution of the
Schr̈odinger, Poisson, and transport equations is necessary [1]–
[3]. In the previous works, the self-consistent solution is usu-
ally obtained in a decoupled manner because the Schrödinger
equation cannot be easily coupled with other equations. There-
fore, the Schr̈odinger equation is usually solved with a given
potential to obtain its eigenvalues and eigenvectors, and outer
iterations together with the Poisson and transport equations are
performed to obtain the self-consistency [1]–[3]. One of the
disadvantages of the decoupled scheme is its slow convergence
rate. Moreover, we observe that it sometimes fails to converge
to a sufficient accuracy in the high gate bias condition.

To solve these problems, we view the Schrödinger equation
as a nonlinear partial differential equation (PDE), and apply
a fully coupled Newton scheme [4] to solve the Schrödinger,
Poisson, and transport equations simultaneously. Although the
computational burden per each iteration may slightly increase
compared with the decoupled scheme, the numerical error and
required number of iterations decrease significantly. Moreover,
the numerical factorization of the Jacobian matrix does not
have to be performed per each iteration because the Newton-
Richardson (N-R) acceleration technique can be applied to
the coupled scheme. Therefore, the overall efficiency as well
as the accuracy of the simulation can be improved by the
coupled scheme when it is applied to moderate sized prob-
lems. For example, when we simulate MOSFET devices in
two-dimension, we usually obtain the subband energies and
wavefunctions along the channel from the one-dimensional
Schr̈odinger equations in the vertical direction, and calculate
the transport of the two-dimensional electron gas (2DEG)
confined in the inversion layer using a semi-classical model. In
this case, the coupled scheme can reduce the simulation time
about an order of magnitude with a much more tight error
bound compared with the decoupled scheme.

As a first simple, but nontrivial application of the cou-
pled scheme, we develop a new hybrid model that solves
the Schr̈odinger equation in the confinement direction and
the quantum corrected transport equation in the transport
direction (2DEG/DG model hereafter). It is similar to the
conventional density-gradient (DG) model [5]–[7], but in our
model, the vertical quantum confinement is included exactly
in the Schr̈odinger equation, and the lateral quantum effects
are included approximately in terms of the effective quantum
potential defined for each subband. Using the proposed model,
we simulate a silicon-based double-gate MOSFET (DGFET)
device and compare the efficiency of the proposed coupled
scheme with the decoupled scheme. Also, we assess the accu-
racy of the 2DEG/DG model using a more rigorous quantum
transport model based on the nonequilibrium Green’s function
(NEGF) method [1], [2]. All of these models are implemented
in our in-house device simulator NANOCAD [7].

II. BASIC MODELS

In the mode-space approach [2], the two-dimensional
Schr̈odinger equation is divided into the confinement (y-
coordinate) and transport (x-coordinate) directions, and the
Schr̈odinger equation in the confinement direction with a
normalization condition can be written as
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In the above equations, k (1, 2, 3) and i (1, 2, . . . , Nsub)
denote the valley and subband indexes,V̄ ≡ V + ∆V is the
sum of the electrostatic potential energy (V ) and the Si-SiO2

band offset (∆V ), andψk
i andEk

i are the wavefunction and the
energy of the subband (k, i), respectively. The closed boundary
condition is imposed on both sides of they-domain. Instead of
finding ψk

i andEk
i by the conventional eigensystem solution

routines, we can directly obtain them by the Newton method
with appropriate initial guesses forψk

i and Ek
i , which is the

basic idea of this work. In the self-consistent calculations, the
equations for the different subbands are coupled to one another
through the Poisson equation.

Whereas the electron density in each subband is obtained
from the energy dependent local density of states (LDOS)
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and their occupations in the NEGF model, the LDOS is not
available in the DG model. Instead, it is assumed that the
transport occurs near equilibrium and the scattering process is
dominant, and the subband density (Nk

i ) is expressed in terms
of the quasi-Fermi energy (Ek

Fi) and the quantum potential
(V k

Qi) by



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)
is the density of states for

the subbands in the k-th valley, andF0 (x) ≡ ln [1 + exp (x)]
is the Fermi-Dirac integral of order zero. Note that the
quantum potential is separately defined for each subband (k, i)
to include the effects of the anisotropic band structure. The the-
oretical value of the dimensionless coefficientr is 3 according
to the microscopic derivation of the quantum potential from
the Wigner distribution function in the nondegenerate limit [6].
The two equations in (3) can be condensed into one as
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wherebk ≡ h̄2/
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)
. The quasi-Fermi energy of each

subband is determined by the semi-classical transport equation
as
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whereµk
i is the mobility of the subband(k, i), andP k′i′

ki is the
local transition rate from the subband(k′, i′) to (k, i). Since
the focus of this paper is more on the numerical aspects of the
coupled scheme and the general properties of the 2DEG/DG
model than on the calibration of the model, we use a simple
mobility model that depends on the impurity concentration and
lateral electric field, and we neglect the local transitions. More
accurate mobility and local transition models, however, can be
applied to our model.

Finally, the Poisson equation can be written as
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The coupled equations are solved by the fully coupled Newton

scheme to obtain the unknown variablesV , ψk
i , Ek

i ,
√

Nk
i ,

andEk
Fi as
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Fig. 1. Schematic of the Jacobian matrix. The total number of unknowns
is ((1 + 3Nsub)NxNy + 9NsubNx). Note that each block matrix is very
sparse.

If we use a tensor grid ofNx × Ny nodes to discretize
the equations, the sizes of the unknown variables,V , ψk

i ,

Ek
i ,

√
Nk

i , andEk
Fi, becomeNxNy, 3NsubNxNy, 3NsubNx,

3NsubNx, and 3NsubNx, respectively. Therefore, the total
number of unknowns becomes((1+3Nsub)NxNy+9NsubNx).
Fig. 1 shows the schematic of the Jacobian matrix. We use a
direct sparse matrix solver and exploit the N-R acceleration
technique in the Newton iteration. We use the solution of the
previous bias step as an initial guess, and we use the decoupled
scheme to obtain the solution of the first bias step. The voltage
difference between the successive steps is chosen to be 0.05
V, which gives good convergence behavior.

We mention that the coupled scheme may lose its advantage
when it is applied to large sized problems such as the NEGF
model. Actually, we have implemented the coupled scheme for
the ballistic NEGF model, and found that the required iteration
number and numerical error indeed decreases similarly to the
case of the 2DEG/DG model. But, the simulation time per each
iteration becomes too long. Therefore, the coupled scheme is
not always better than the decoupled scheme, but there are
many applications that the coupled scheme works better.

III. S IMULATION RESULTS AND DISCUSSION

We simulate an ultra thin body DGFET device as shown
in Fig. 2. We first show the typical convergence behavior
of the coupled and the decoupled schemes in Fig. 3. The
decoupled scheme uses a variant of the Gummel scheme [2],
[3]. As expected, the coupled scheme gives rapid convergence
compared with the decoupled scheme in every bias condition.
Moreover, it requires much less simulation time (it takes about
80 sec in PC to obtain theID-VG curve shown in Fig. 8
consists of 16 bias points), which is due to the reduced number
of iterations as well as the N-R acceleration.

Since the vertical quantum confinement effects are relatively
well known and accurately included in our model, we directly
move on to the lateral quantum effects. To verify the validity
of the lateral quantum correction in the 2DEG/DG model, we
show several important physical quantities along the channel
direction whenVG = −0.4 V. The bias point is chosen
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Fig. 2. Schematic of the thin body DGFET structure. The device and crystal
coordinates are aligned. The same bias is applied to the top and bottom gates.
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Fig. 3. Comparison of the convergence behavior between the coupled scheme
and the decoupled scheme. The previous bias steps (VG increases by 0.05 V
for each bias step) are used as the initial guesses. In the coupled scheme,
actual numerical factorizations occur only at the first two or three iterations.

because the lateral quantum effects are more significant in
the off state. Fig. 4 shows the electron density along the
x-direction predicted by the 2DEG/DG model with several
different values ofr and the NEGF model. The lateral quantum
correction becomes weaker asr increases, and whenr = ∞,
the lateral quantum correction vanishes. The electron density
predicted by the 2DEG/DG model withr = 3 (theoretical
value) is very close to the value predicted by the NEGF
model, which suggests that the quantum potential equation
reasonably takes into account the lateral quantum effects.
To see the effects of the lateral quantum correction on the
relative occupations of electrons between subbands, we show
the subband densities along the channel in Fig. 5. Subband
densities predicted by the 2DEG/DG model agree well with
the NEGF model. Note that the difference betweenN1

1 and
N3

1 is due to the difference in the lateral quantum correction,
which depends on the lateral effective mass as shown in (3).
Fig. 6 shows the subband energy levels and quantum potentials
along the channel. Since themx of the valley 1 corresponds
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Fig. 4. Electron density along the channel (
∑

k,i Nk
i (x)) predicted by

the 2DEG/DG model with different values ofr (line) and the NEGF model
(symbol). The lateral quantum correction becomes weaker asr increases.
Whenr = ∞, the lateral quantum correction vanishes.
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Fig. 5. Subband electron densities along the channel predicted by the
2DEG/DG (line) and NEGF (symbol) models.

to the longitudinal effective mass (0.98m0), whereas those
of the valley 2 and 3 are equal to the transverse effective
mass (0.19m0), the magnitude of the quantum potential for the
valley 1 is smaller than those of 2 and 3. Also, we can see that
E1

1 and E3
1 are equal, which means that the quantum effects

along the vertical direction are same because the effective
masses in the vertical direction are same in these valleys.
Fig. 7 shows the bias dependence of the minimum subband

energy level predicted by the 2DEG/DG model and the NEGF
model. We first increase the gate bias from -0.4 V to 0.2 V
with the drain bias fixed to 0.05 V, and then we increase the
drain bias from 0.05 V to 0.35 V. The agreements between
the 2DEG/DG model and the NEGF model are good for the
low drain bias conditions. As the drain voltage increases,
however, the two models predict slightly different behaviors.
In the NEGF model, the potential drop occurs only in the
channel region because the scattering is neglected, whereas
the 2DEG/DG model predicts that there exist slight potential
drops in the source and drain regions as well because of the
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Fig. 6. Subband energy levels and quantum potentials along the channel
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Fig. 7. Bias dependence of the minimum subband energy level predicted by
the 2DEG/DG model (line) and the NEGF model (symbol). The gate bias is
first increased from -0.4 V to 0.2 V with the drain bias fixed to 0.05 V, and
then the drain bias is increased from 0.05 V to 0.35 V.

finite resistances in these regions.
Fig. 8 shows theID-VG characteristics predicted by the

2DEG/DG model with different values ofr, where we also
plot those predicted by the NEGF model in the ballistic limit.
The 2DEG/DG model withr = 3 predicts larger subthreshold
leakage current and smaller on current compared with the
NEGF model, which shows the limitation of our transport
model that is based on the drift-diffusion (DD) equation. In
the DD equation, we assume that the carrier scattering is large
enough in order to define the local quasi-Fermi level, whereas
we neglect the carrier scattering entirely in the ballistic NEGF
model, and the actual carrier transport occurs between these
two limits. For the DGFET device under consideration, we
believe that its operation condition is close to the ballistic limit
because the channel length is only 7.5 nm that the electrons
injected from the source do not experience enough scattering
before they exit the channel. Therefore, the transport equation
of our model should be revised to predict the correct I-V
characteristics of the nano-scale MOSFET devices.
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Fig. 8. ID-VG characteristics predicted by the 2DEG/DG model with
different values ofr (line) and the NEGF model (symbol).

IV. CONCLUSION

In this paper, we explained a fully coupled Newton scheme
for the self-consistent solution of the Schrödinger, Poisson, and
transport equations. We verified that the coupled scheme can
increase the convergence rate, reduce the numerical error, and
improve the overall efficiency compared with the decoupled
scheme if the problem size is not too large. The coupled
scheme is applied to a new hybrid model called 2DEG/DG
model that solves the one-dimensional Schrödinger equation in
the confinement direction and the quantum corrected transport
equation in the transport direction. The predicted internal
properties in near equilibrium conditions are very close to
those of the NEGF model. But the I-V characteristics do not
agree well with the NEGF model, which suggests that we
must find out the transport equation valid at the quasi-ballistic
regime.
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