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Abstract— In this work we investigate the electrostatics of three
multi-gate device structures, namely the rectangular GAA-FET,
the tri-gate FinFET and the II-gate FET, all of them at three
different miniaturization limits corresponding to the 90, 65 and
45 nm technology nodes of the ITRS. In doing so, we solve
both the classical Poisson equation and the coupled Schrodinger-
Poisson equations within the device cross sections, and compare
the classical and quantum-mechanical (QM) solutions. This com-
parison highlights the qualitative and quantitative discrepancies
between the two models, both in terms of charge distribution
and device performance. These differences turn out to be very
relevant for all device structures, and increase as the device size
is scaled down. Thus, the main conclusion of this study is that
accounting for quantum-mechanical effects in device simulation is
essential for a realistic prediction of the device threshold voltage,
inversion-layer charge and gate capacitance.

I. INTRODUCTION

The Microelectronics industry has relied on shrinking tran-
sistor geometries for improvements in circuit performance and
cost per function over three decades. In the future, continued
transistor scaling will not be as straightforward as it has been
in the past, because fundamental material and device limits
are rapidly being approached with the bulk CMOS technology.
Innovative device structures are needed to continue improving
the device performance. Non-classical MOSFET architectures,
such as ultra-thin-body single- or multi-gate transistors, can in
fact be scaled down more aggressively than the bulk-CMOS
ones, and may thus become promising candidates for future
technology nodes.

The new emerging structures are all characterized by non-
planar geometries, which lead to new process technology
requirements. In order to meet the specs highlighted by the
International Technology Roadmap for Semiconductors [1],
future transistors will require high-permittivity (high-x) gate
dielectrics and metal gate electrodes with suitable work func-
tions. Several non-planar, multi-gate (i.e., tri-gate and gate-all-
around) structures have been proposed to obtain an effective
gate control [2].

As the electrostatics, including quantum effects, becomes
a crucial issue in the design of new device architectures,
we address here the electrostatics of nanoscale FETs with
various gate-geometry configurations, namely, the rectangular
GAA-FET, the tri-gate FinFET and the II-gate FET. Such
devices represent the best trade off between performance and
manufacturability among the different multi-gate silicon-based
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Fig. 1. The analyzed structures: (a) rectangular GAA-FET,
(b) tri-gate FinFET and (c) II-gate FET. Three different device
sizes are considered for each of them, corresponding to the
90, 65 and 45nm technology nodes, namely: tg; = 40nm,
W = 20nm and t,x, = 2nm (90 nm node); tg; = 20nm,
W = 10nm and t,x = 1nm (65 nm node); tg; = 10nm,
W =5nm and ¢, = 0.7nm (45 nm node).

proposed structures [3]. Also, their architectures are similar
enough to allow for a meaningful comparison between them.
This paper is organized as follows: in section 2, we discuss
the numerical details of the approach used for the solution
of the electrostatic problem; section 3 illustrates the results
and discusses the potential advantages of each device. The
conclusions are drawn in section 4.

II. SIMULATION APPROACH

Figure 1 illustrates the cross section of the devices investi-
gated in this work: (a) the rectangular GAA-FET, (b) the tri-
gate FinFET, and (c) the II-gate FET. These structures have
been extensively explored in recent experimental works, due
to their technological feasibility (see e.g. [4]). Three device
sizes, corresponding to the 90, 65 and 45 nm technology nodes
are considered for each of the above structures. The analysis
of the electrostatics is carried out assuming zero drain and
source voltages. The coupled Schrodinger-Poisson equations
are solved in 2D within the device cross section. The electron
wave functions are computed using a novel approach based
on a rigorous semi-analytical method, which takes advantage
from the existence of analytical unperturbed solutions within
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the potential wells and provides very accurate results with
a fast computation time [5]. More specifically, the devices
are first addressed by analytically solving the Schrodinger
equation within a rectangular potential well. This provides the
unperturbed energy eigenvalues Er(,% and eigenfunctions 107(,921.
The first iteration of Poisson’s equation is then computed, and
its solution is used to determine the perturbation Hamiltonian
0H. Next, due to the completeness of the unperturbed eigen-
function set, ¥, is expanded in series of the corresponding
unperturbed eigenfunctions w,%:
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where a and b are the channel heigth and width, respectively;

my, m,, are the electron effective masses along the z,y

directions, respectively, and E,(,% are the energy eigenvalues.

Accounting for the 6 equivalent valleys of silicon, m, , = my
for 2 valleys and m, , = m; for 4 valleys. Hence, three sets
of energy eigenvalues are generated, according to the three
possible combinations of m} and m}, namely: m) = mj,
my = mg; my = mj, my =m;; my =my, m,; =mJ. For
the sake of notational simplicity, we do not explicitly introduce
an additional index to identify the three sets of eigenvalues.
Inserting (1) into the Schrodinger equation, one finds that
the coefficients cy,;m) are the eigenvectors of the perturbation
matrix H, whose entries A,y ;) are:

Also, the eigenvalues of H are the energy eigenvalues E,,,
associated with the perturbed Hamiltonian.

Rather than using the standard textbook formulas of the
perturbation theory, as suggested in [6], we numerically solve
the resulting eigenvalue problem, and determine the exact
expansion coefficients. The new sets of perturbed eigenvalues
and eigenfunctions allow for the determination of the updated
space charges. In this way the Schrédinger equation is solved
in a semi-analytical form, thus largely eliminating discretiza-
tion errors and providing very accurate energy eigenvalues
and eigenfunctions. Also, we integrate the non-linear Poisson
equation by the Newton-Raphson method, and compute the
Jacobian matrix at each iteration by numerically differentiating
the space charge. This approach turns out to be stable, and
an order-of-magnitude faster than a fully-numerical solution,
because the rank of the eigenvalue problem to be solved is
equal to the number of unperturbed eigenfunctions used for the
expansion, which is not too large for relatively-small device
sizes. A classical model is used instead for holes, owing to
their small influence on the device behavior.

Fig. 2.

Electron concentration n (cm™3) in the tri-gate
FinFET of ts; = 10 nm, W = 5 nm, t,x = 0.7 nm for
Vo = 1.0 V. Left: classical solution, right: quantum solution.

III. RESULTS

Unlike single- or double-gate MOSFETs, multi-gate devices
exhibit non-planar Si-SiOs interfaces with corners, which are
expected to be responsible for an undesirable carrier non-
uniformity within the inversion layer. Figure 2 shows the
classical (left) and QM (right) electron concentration n within
the channel of the tri-gate FinFET at Vg = 1 V. The classical
solution exhibits sharp peaks at the upper corners of the device,
where n approaches 10%! cm~3. The QM solution is instead
much more uniform along the inversion-layer ridge, with a
peak concentration below 7 x 10'° cm™3 at the center of the
upper planar interface. Rather surprisingly, such a markedly-
different behavior marginally affects the device threshold
voltage at the device sizes considered in this work, so long
as the impurity concentration is small enough to provide a
negligible contribution to the band bending.

Figure 3 (top) shows the second derivative of the electron
charge per unit length N/ (V) with respect to Vi for the
largest tri-gate FinFET at two different impurity concentra-
tions. The maxima of this plot represent the peak curvatures
of the N, (V) function, which are related with the turning on
of the inversion layer. The device with the lower impurity
concentration exhibits a single peak, indicating that both
corners and edges build up the channel at the same gate
voltage, while the heavily-doped one exhibits two peaks in
both models. The first peak corresponds to the charge inversion
at the top corners; the second one is related to the top and
sidewall channel formation. As expected, in the latter case the
QM model predicts a larger threshold voltage, because the
band bending within the depletion region is not negligible at
high impurity concentrations. At the same time, the charge
confinement at the center of the cross section increases the
surface potential and reduces the corresponding voltage drop
across the oxide, leading to a smaller amount of channel charge
for a given gate voltage. This effect is stronger the higher the
impurity concentration.

The electron charge per unit length at the top corners (¢op) is
plotted in normalized form as a function of the gate voltage at
the bottom of figure 3. This quantity has been computed as the
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Fig. 3. Top: second derivative of the total electron density

with respect to the gate voltage for the tri-gate FinFET of tg; =
40 nm, W = 20 nm, tox = 2 nm and N4 = 2 x 108 cm™3
and 6 x 10'® cm~3. Bottom: relative contribution ntep /N, of
top corner densities to the total electron density (1}, has been
obtained integrating the electron density over two squares with
5 nm side length on the two corners). Solid lines: classical
solution, dashed lines: quantum solution.
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Fig. 4. Second derivative of the total electron density with

respect to the gate voltage for the GAA-, the II-gate FET and
the tri-gate FET. tg; = 40 nm, W = 20 nm, fox¢ = 10 nm,
tox = 2nm and Ny = 6 x 108 cm—3. Solid lines: classical
solution; dashed lines: quantum solution.

integral of the electron density within two small squares with
5 nm side length on the two corners. Interestingly, nop/Ne
increases at low gate voltages from 60% to nearly 100% as
the doping density N4 grows from 2 to 6 x 10'® cm™3.
This behavior indicates that the corner effect is stronger
as doping increases. The QM solution provides a markedly
smaller nop, /N, ratio, because the charge is removed from the
interface and more uniformly distributed. As the gate voltage
increases, a transition occurs from the corner-dominated to the
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Fig. 5. Electron charge density per unit area of the Il-gate
FET. The parameters of the 90 (circles), 65 (stars) and 45 nm
(squares) technology nodes reported in the insets have been
used. Solid lines: classical solution; dashed lines: quantum
solution.

sidewall-dominated charge distribution, which is reflected by
the decrease of the ny,, /N, ratio.

The effectiveness of the gate control on the electrostatic perfor-
mance of the devices is shown in figure 4, which compares the
second derivative N/ with respect to the gate voltage for the
three FETs at their largest dimensional size. This comparison
shows a better uniformity for the GAA-FET, where the gate
completely surrounds the device active area.

Moreover, the influence of the scaling rules is investigated by
changing the geometrical parameters tg;, W, and ¢,y according
to the ITRS prescriptions for the 90, 65 and 45 nm technology
nodes [1]. Figure 5 shows the charge density per unit area
N./[2(W + tg;)] for the II-gate FETs at each technology
node. The electron density has been normalized to the device
perimeter, in order to provide a fair comparison among devices
with a different cross section. The subthreshold slope S is
nearly ideal for the two smaller devices, whereas it becomes ~
70 mV/dec for the larger one, which is only partially depleted.
Also, the smaller devices exhibit a higher electron density per
unit area, but the global electron charge per unit length is of
course lower. For a fixed gate overdrive Vi — Vr the difference
between the QM and classical electron charge density per unit
area turns out to be 29%, 38% and 45%, for the 90, 65 and
45 nm nodes, respectively. The reduced performance predicted
by the QM model is due to the vanishing of the wave functions
at the Si-SiOs interface, which shifts the inversion-layer charge
away from it, thus reducing the inversion-layer capacitance.
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Fig. 6. Top: Gate capacitance per unit area vs. gate voltage
for the II-gate FET. The 90 (circles), 65 (stars) and 45 nm
(squares) technology node parameters have been used in
the computation. Solid lines: classical solution; dashed lines:
quantum solution.

Figure 6 represents the gate capacitance per unit area for the
II-gate FETs at each technology node. Here again, the gate
capacitance per unit length has been normalized with respect to
the device perimeter, in order to make the comparison among
the three device sizes more easily understandable. The figure
shows again fairly large discrepancies between the classical
(solid lines) and the QM (dotted lines) models, which may be
as large as 57%. The threshold shift which occurs as the device
size increases is also highlighted by the figure. The smaller
devices exhibit a higher gate capacitance per unit area, but a
lower global capacitance per unit length.

Figure 7 (upper) shows the second derivative N/ (V) for the
three II-gate FETs with different sizes. Here again we see that,
as the doping and the device size increase, the FET experiences
a double threshold, and an increasing discrepancy between the
classical and QM thresholds shows up. The lower figure shows
the fractional charge at the corners for the same devices. As
expected, corner effects become less pronounced the smaller
the device size and the doping density.

IV. CONCLUSIONS

This study shows that accounting for quantum-mechanical
effects in the analysis of multi-gate structures at low di-
mensional limits is essential for a realistic prediction of the
device performance. The QM model invariably predicts a
larger threshold, a less pronounced corner effect, a smaller
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Fig. 7. Top: second derivative of the total electron density

with respect to the gate voltage for the II-gate FET. The 90
(circles), 65 (starts) and 45 nm (squares) technology nodes
parameters have been used. Bottom: relative contribution
Ntop/Ne Of top corner densities to the total electron density.
Solid lines: classical solution; dashed lines: quantum solution.

charge density and a smaller gate capacitance. The error on
the channel charge for a fixed gate overdrive may be as large
as 29%, 38% and 45% at the 90, 65 and 45nm technology
nodes, respectively, if a classical solution is used.
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