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Abstract— It is well known that the simulation of time-
to-failure for copper (Cu) metal lines requires modeling
of vacancy electromigration as well as void nucleation,
growth, and movement. Because of the complexity of this
problem, different approximate approaches to the physical
formulation and solution appear in the literature. Based
on our work for two-dimensional electromigration induced
void migration and our experience on mesh adaptation
techniques we present a computational method for three-
dimensional tetrahedral mesh refinement and hierarchical
coarsement according to the demands of advanced elec-
tromigration simulation.

I. I NTRODUCTION

Implementation of copper and low-K materials as major
components of interconnect structures has resulted in the
necessity to create new current design rules to ensure chip
immunity to electromigration induced failures. This practical
demand causes an enormous interest in understanding the
fundamental reliability properties of interconnect copper met-
alization.
Modeling the micro-mechanics of electromigration caused
void evolution is a long-standing scientific problem. It began
with sharp interface models requiring an explicit finite element
tracking of void surfaces during the course of evolution.
Later, prompted by the complexity of void surfaces, diffuse
interface models were introduced [1]. Diffuse interface models
circumvent computationally costly surface tracking by appli-
cation of a smooth order parameter field for representation
of the void structures. We solve the diffuse interface model
governing equation with a finite element scheme coupled
with a powerful mesh adaptation algorithm. The robustness
of the developed finite element approach with respect to the
underlying mesh structure makes it possible to efficiently
simulate the damage induced by electromigration in complex
interconnect geometries.

II. ELECTROMIGRATION

Electromigration is the transport of material caused by
the gradual movement of the ions in a conductor due to
the momentum transfer between conducting electrons and
diffusing metal atoms. All work in this field was pioneered
by James R. Black [2], who set the basis for research in this
area and after whom the Black semi-empirical equation

MTF =
A

jn
exp (

Ea

kBT
) (1)

is named, whereMTF is the median time-to-failure,A is a
pre-exponential constant.Ea is the activation energy,kB is
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Figure 1: Mass transport of metal atoms along different
diffusion paths in a typicalCu interconnect line.

Boltzmann’s constant,T is the temperature,j is the current
density, andn is the so called current density exponent.
The problem with this formula is, that the activation energy
Ea and the current density exponentn have to be deter-
mined experimentally and therefore its validity is limitedto
specific test configurations. To understand the phenomenon
of electromigration a more physical approach, based on the
main diffusion scenes within interconnect structures mustbe
applied.

A. Fast-diffusion-paths

The mechanism of electromigration can be explained by the
interaction of two counteracting forces:

• activated, positively charged metal ions suffer a force to
the cathode direction,

• the electrons, while moving to the anode, transmit an
impulse to the metal ions.

Because of a shielding effect of the conduction electrons on
metal ions, the first force generally is small. This means
that in a metal lattice a mass flux of ions exists, which is
directed parallel to the so calledelectron wind. The mass
flow takes place in the form of diffusion along interfaces, as
grain boundaries and surfaces, and by volume diffusion. In
Cu interconnects, grain boundary and interface diffusion are
the dominating transport mechanisms at normal temperature
operating conditions [3]. A schematic overview of different
diffusion-fast-pathsis shown in Figure 1. Local mass flux di-
vergences cause the formation, growth, and movement of voids
and hillocks. In this work we mostly focus on modeling of void
movement within an arbitrary interconnect structure and the
development of a powerful mesh adaptation technique, which
allows to use a diffuse interface model for the description of
the metal void interface.
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B. Diffuse interface model

In diffuse interface models void and metal area are presented
through an order parameterφ which takes values+1 in the
metal area,−1 in the void area, and−1 < φ < +1 in the
void-metal interface area. The model equations for the void
evolving in an interconnect line are the balance equations for
the order parameterφ

∂φ

∂t
=

2Ds

ǫπ
∇ · (∇µ − |e|Z∗∇V ), (2)

µ =
4Ωγs

ǫπ
(f ′(φ) − ǫ2∆φ), and (3)

∇ · (σ(φ)∇V ) = 0 (4)

for the electrical field, whereµ is the chemical potential,f(φ)
is the double obstacle potential,Z∗ is the effective valence,e
is the charge of an electron andǫ is a parameter controlling
the void-metal interface width which is approximatelyπ/2. γs

is the surface energy,Ω marks the volume of an atom, andDs

is given by an Arrhenius law

Ds =
D0δs

kBT
exp (

−Qs

kBT
), (5)

where, δs is the thickness of the diffusion layer,kBT has
the conventual meaning,Qs is the activation energy for the
surface diffusion, andD0 is the pre-exponential for mass
diffusion.

In order to handle properly thin interfaces one needs a very
fine local mesh. Equations (2)-(4) are solved by means of
the finite element method [4] on the sequence of the meshes
Λh(t0 = 0),Λh(t1), · · · ,Λh(tN ) each one adapted to the
position of the void-metal interface from the previous time
step. The initial meshΛh(0) is produced by refinement of
a basic mesh according to the initial profile of the order
parameterφ.

III. M ESH ADAPTIVITY METHODS

In general there are three mesh adaptation methods, namely
the r-, h-, andp-method [5].
Using the r-method, the mesh connectivity is unchanged.
Instead, node relocation is used to move the mesh nodes either
by means of weighted barycentric smoothing based on the
location and the weight of the nodes in some neighborhood,
or by means of element distortion. The criteria (weights)
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Figure 2: Local three-dimensional simplex partitioning.

governing these operations are obtained by analyzing the
actual solution.
h-method adaptation is defined in terms of local or global
mesh enrichment by means of refining (by partitioning) or
coarsening selected elements or all the elements in a mesh.
The p-method approach is based on an invariant mesh (in
terms of points (nodes, vertexes) and elements) and adjusts
the degree (in terms of the interpolation functions) of the finite
elements constructed on the mesh elements as a function of
the current solution analysis.
To achieve a local partitioning which is required for theh-
method three configurations of inserting a new vertex (node)
on the three-dimensional simplex are possible. It is likelyto
define a new vertex along an edge, on a face, or inside the
tetrahedron (see Figure 2).
In our implementation we use a special kind of anh-method
adaptation where only mesh refinement by inserting a ver-
tex on the longest edge of the refinement tetrahedron is
allowed [6], [7].

A. Recursive approach

When bisecting a tetrahedron, a particular edge – called
the refinement edge– is selected and split into two edges
by a new vertex, cf. Figure 2 (left). This mesh refinement
strategy was enhanced by a recursive tetrahedral bisection
approach which produces quite regular refined elements
under consideration of the geometric element quality, which
allows a very smooth transition from coarse to fine mesh
elements [8].
To guarantee a conforming mesh during the refinement
procedure all tetrahedrons that share a common refinement
edge are divided. A tetrahedron is said to becompatibly
divisible if its refinement edge is either the refinement edge of
all other tetrahedrons sharing the refinement edge or its part
of the boundary of the domain. If a tetrahedron is compatibly
divisible, we divide the tetrahedron and all other refinement
edge sharing tetrahedrons simultaneously. If a tetrahedron is
not compatibly divisible, we ignore it temporarily and divide
a neighbor tetrahedra by the same process first. This leads to
the recursive algorithm.

The choice of the longest edge as the refinement edge
appears to be good from a numerical point of view, but on
the other hand, the recursion can become very large. The
refinement of a particular element can enforce the bisection
of remote elements. For the purpose of a local refinement it
appears to be more convenient to spend some preprocessing
time and find the refinement edges where almost all tetrahe-
drons are compatibly divisible, which implies that recursion
will be as small as possible.

B. Hierarchical mesh coarsement

According to the needs of void movement simulation
during electromigration also a hierarchicalmesh coarsement
part was introduced. The basic idea behind this coarsement
strategy is that a previous refinement step is reversed. This
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(a) Simulation domain, with cross cutting plane. (b) Cross cut with mesh elements.

Figure 3: Three-dimensional interconnect electromigration simulation domain with trapezoid shaped tantalum (Ta) covered
copper (Cu) lines, round conical via, and horizontal silicon carbide (SiC) etch stop layers embedded in silicon dioxide (SiO2).

(a) Temperature distribution. (b) Electrical field distribution.

Figure 4: Temperature distribution and electrical field calculated on the simulation domain by applying appropriate electrical
and thermal boundary conditions. Both quantities influencevoid nucleation.

procedure can be handled easily by introducing a hierarchical
element structure as shown in Figure 6.

During transient simulation the position of the interface
is detected after every timestamp and the mesh resolution
is controlled. Too coarse elements are refined by recursive
tetrahedral bisection. Regions which have been refined in a
previous time step and which are not covered by the void-metal
interface area are loaded into the coarsement module. Due
to the properties of our hierarchical element data structure,
the initial (before the refinement) mesh constellation can be
recovered easily. It’s in the nature of this approach that the
initial mesh is always part of the current mesh and no coarser
mesh than the initial one can be reached. This seems to be
a handicap but on the other hand the most coarse mesh is

defined by the initial one and therefore the lowest spatial
resolution is well known which helps to bound the numerical
error introduced by the mesh [9].

IV. EXAMPLES

Our mesh adaptation techniques are demonstrated on a
typical three-dimensional interconnect structure (see Figure 3)
with trapezoid tantalum covered copper lines with etch stop
layers embedded in silicon dioxide. For the generation of the
initial unstructured mesh, we used Gmsh which is a finite
element mesh generator (primarily Delaunay) with built-inpre-
and post-processing facilities [10]. This mesh generator allows
to control the initial spatial resolution of the simulationdomain
quite well and therefore a low error bound can be guaranteed
(cf. section III-B). Temperature and electrical field distribution
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(a) Void is formed nearCu grain boundary. (b) Void moved towards the interconnect via.

Figure 5: During void formation and movement a dynamic mesh adaptation scheme is used to guarantee a good spatial
resolution on the void copper interface. Also copper grain boundaries are taken into account and an appropriately fine mesh
was computed.
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Figure 6: Data structure of refinement-coarsement scheme.

for the test circuit are given in Figure 4. As mesh adaptation
example a typical void movement is chosen where the void
was formed from anCu - cap-layer interface near aCu grain
boundary. Figure 5(a) shows an initial void formation with a
fine mesh near the void-metal interface. During the transient
simulation the void moves towards the interconnect via and
the mesh is adapted dynamically as depicted in Figure 5(b).
The recursive refinement procedure works quite well and
shows in practice a quite local and robust behavior being
important for the number of overall mesh elements which have
a direct impact on computational costs like memory usage and
simulation time.

V. CONCLUSION

We presented a dynamic mesh refinement and coarsement
strategy which fulfills the demands of electromigration simu-
lation based on a finite element diffuse interface approach.As
refinement procedure a recursive tetrahedral bisection method
was used, which gives in practice satisfactorily local behavior,
and is therefore a good tradeoff between element quality and
computational effort. For the coarsement step a hierarchical

refinement step-backprocedure was chosen, which keeps the
data structure complexity low and makes the adaptation fast
and robust. Based on this dynamic mesh adaptation techniques
a typical void movement within an interconnect line has been
shown.
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