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Abstract— For an accurate description of direct tunnel-
ing in CMOS devices under inversion conditions lifetime
based approaches rely on the precise determination of
quasi-bound states (QBS).

We study the calculation of QBS in resonant tunneling
diode (RTD) structures and MOS inversion layers by
the perfectly matched layer (PML) method. Introducing
a complex coordinate stretching allows to apply artifical
absorbing layers at the boundaries. The QBS appear as the
eigenvalues of a linear non-Hermitian Hamiltonian where
the QBS lifetimes are directly related to the imaginary part
of the eigenvalues. The PML formalism has been compared
to the established quantum transmitting boundary method
where a computationally demanding scanning procedure
yields the desired lifetimes. The PML method proves as an
elegant, numerical stable, and efficient method to calculate
QBS lifetimes.

I. INTRODUCTION

The continuous progress in the development of semicon-
ductor devices within the last years goes hand in hand with
down-scaling the device feature size. Since the device feature
sizes approach the wave length of free electrons, the influence
of quantum mechanical effects gain importance. Especially
quantum mechanical tunneling has significant effects on the
characteristics of state-of-the-art microelectronic devices. A
major, if not the dominant, source of tunneling electrons in
the inversion layers of MOS-structures and resonant-tunneling
electrons is represented by quasi-bound states (QBS) [1] [2].
Since continuum based models, like the frequently used TSU-
ESAKI formula [3], do not take account these effects, a life
time based approach which requires the estimation of the QBS,
is compulsory.

II. CALCULATION OF QBS

Whenever electrons are confined, or partially confined in
movement, this gives rise to bound and quasi bound states.
For an accurate description of the tunneling process, models
which takes this into account are necessary.

Depending on the shape of the potential well, type-one QBS,
which are related to energies where the system is fully open,
and type-two QBS can occur as this is pointed out in Fig. 1.

Within our simulation framework, the QBS are obtained
from the single particle, time-independent effective mass

B1

A
1

BN

NA

1A

B1

Figure 1: The upper figure shows type-one QBS which occur
in an open system while in the lower figure the system is half
open at the energy levels of the QBS which are therefore of
type-two.

SCHRÖDINGER equation:

− h̄2

2
∇ ·

(

m̃−1∇Ψ(x)
)

+ V (x)Ψ(x) = EΨ(x) . (1)

In a first approximation the energy levels of the QBS can be
estimated by the eigenvalues of the closed system Hamiltonian.
Since closed boundaries are assumed, no information about
the broadening and the associated QBS life times is available.
Also, bound states cannot carry any current, since they fulfill
the relation:

Ψ∇Ψ∗ − Ψ∗∇Ψ = 0 . (2)

A semi-classical approximation based on corrected closed-
boundary eigenvalues using a classical formulation of the
escape time (life time) has also been reported [4] but using
the closed-boundary eigenvalues for the calculation of open-
boundary QBS lifetimes seems to be questionable.

A. QUANTUM TRANSMITTING BOUNDARY METHOD

A widely used method to apply open boundary conditions to
(1) is the quantum transmitting boundary method (QTBM) [5].
Starting point is the discretized Hamiltonian of the closed
system, which is augmented with traveling waves at the
boundary points of the simulation region in order to obtain
open boundary conditions. Since the entries of the Hamiltonian
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Figure 2: The transmission coefficient of the RTD computed
by means of the QTB method. The inset compares the first
resonance with a Lorentzian function.

at the associated points depends exponential by on the energy,
the Hamiltonian of the system becomes non-linear.

Therefore, the lifetime broadening of the QBS has to be
determined by a computationally intensive scanning procedure.
For type-one QBS which might occur in an unbiased RTD
structure as sketched in Fig. 1, the QBS follow from the
resonances of the transmission coefficient.

The transmission coefficient features a Lorentzian shape
at the resonances as shown in Fig. 2. The full-width half
maximum (FWHM) is related to the QBS lifetime by

τi = h̄/FWHMi . (3)

However, the situation is more complex for the MOS-
inversion layer. Since it is a half open system for the energy
range of interest (containing the type-two QBS) the trans-
mission coefficient is zero. In these situations the traditional
approach is based on a computationally intensive scanning of
the derivative of the phase of the reflection coefficient [6]. A
numerically more stable method which detects the peaks of
the resonance coefficient has been outlined in [7].

While these methods are feasible for situations with weak
confinement (low or thin barriers), they are hardly applicable
to energy barriers of MOS capacitors. Energy resolutions in
the peV regime are necessary to accurately resolve the full-
width half maximum (FWHM) value necessary to calculate the
QBS lifetime, which is infeasible for everyday application.

B. PERFECTLY MATCHED LAYER METHOD

Recently, a method based on absorbing boundary condi-
tions (called the Perfectly Matched Layer (PML) method) for
SCHRÖDINGER’s equation has been applied for band structure
calculations in III-V heterostructure devices [8].

Within this work the PML formalism, which is often used
in electromagnetics, has been applied to determine the lifetime
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Figure 3: The upper figure shows the energy levels and the
squared wavefunctions of the RTD as obtained by the PML
method. The complex stretching function is depicted in the
lower figure.

broadening of QBS in a resonant tunneling diode structure and
MOS inversion layers.

The basic principle is to add non-physical absorbing layers
at the boundary of the simulation region (physical region). This
procedure prevents reflections at the boundary of the physical
region. The artifical absorbing layers allow the application of
Dirichlet boundary conditions, and the QBS are determined
by the eigenvalues of the non-Hermitian, linear Hamiltonian of
the system. The resulting eigenenergies and the corresponding
wavefunctions for the RTD described in [8] are displayed in
Fig. 3.

The absorbing property of the PML region is achieved by
introducing stretched coordinates

x̃ =

∫ x

0

sx(τ) dτ (4)

in (1). The evaluation of the nabla operator ∇ in one
dimension yields:

∂

∂x̃
=

1

sx(x)

∂

∂x
(5)

Within the PML region, the stretching function sx(x) is
given as sx(x) = 1 + (α + ıβ)xn, with α = 1, β = 1.4, and
n = 2, while it is unity in the physical region as displayed in
Fig. 3.

Adding absorbing layers at the boundary of the physical
simulation region, the Hamiltonian becomes non-Hermitian
and admits complex eigenvalues E = Er + ıEi, where the QBS
lifetimes are related to the imaginary parts of the eigenvalue
as

τi = h̄/2Ei. (6)
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Figure 4: Comparison of CPU demand for the PML and QTB
methods.

In contrast to the QTBM, the Hamiltonian of the system
still remains linear. Furthermore, all QBS are calculated in
one step and no iteration or scanning procedure is needed.
Assuming a constant potential V (z) within the PML regions,
the wavefunctions can be written as a plane wave Ψ(x) =
Ψ0 exp(ık̃xx) with the wave vector k̃x = kx/sx. Considering
two points in the PML region x1, x2 = x1 + dx the wave
vector at the point x2 can be approximated as

kx(x2) ≈
sx(x2)

sx(x1)
kx(x1) = (1 + (α + ıβ) dx) . (7)

The parameter α scales the phase velocity of the plane wave,
while β acts as a damping parameter. Since this damping
coefficient is greater than zero within the absorbing region
the envelope of the wavefunctions is pinned to zero as shown
in Fig. 3. These parameters, as well as the thickness of the
absorbing layer can be varied over a wide range with virtually
no influence on the results as long as there are no reflections at
the boundaries. However, for this goal the complex stretching
function and its first derivative have to be continuous as shown
in Fig. 3.

Using QTBM or assuming closed boundary conditions
yields a superposition of two moving plane waves in opposite
directions. In contrast, when using PML, there are no reflected
waves. The wavefunction is a plane traveling wave with a
constant envelope function. The QBS, however, are reproduced
correctly.

C. COMPARISON

The PML formalism was applied to the AlGaAs-GaAs RTD
studied in [8]. The resulting wave functions have been shown
in Fig. 3. It also depicts the shape of the stretching function.
Perfect agreement between PML and QTBM as well as with
the results in [8] have been achieved as pointed out in Table. 1.

PML Ereal [meV] Eimag [eV] τl [ps]
1 48.1 −2.77 × 10

−5
11.84

2 193.1 −3.75 × 10
−4

0.876

3 426.9 −3.56 × 10
−3

0.0924

QTBM Ereal [meV] FWHM [eV] τl [ps]
1 48.1 5.0 × 10

−5
11.4

2 193.0 7.5 × 10
−4

0.877

3 427.0 7.0 × 10
−3

0.092

Closed Ereal [meV]
1 48.1

2 193.6

3 423.0

Table 1: The energy levels and the lifetime in the RTD
structure. The PML method in the upper table is compared
with the QTB method in the middle table. The eigenvalues of
the closed system are also given.

To further justify the use of the PML method we compared
the computational effort of the PML and QTBM approaches
for the RTD structure. Fig. 4 shows the CPU time necessary
to calculate 1, 3, and 30 quasi-bound states with the QTB
and PML methods as a function of the spatial resolution. For
the QTBM, an equidistant grid in energy space was used to
determine the lifetime broadening of the QBS.

The PML which delivers all QBS at once, shows a stronger
dependence on the spatial resolution. However, the demand
on CPU time is almost always lower as compared to the QTB
method, especially for stronger confined states as encountered
in MOS structures.

III. CALCULATION OF GATE LEAKAGE CURRENTS

For the investigation of gate current leakage in MOS tran-
sistors the conduction band edge has been acquired from a
self-consistent quantum-mechanical SCHRÖDINGER-POISSON
solver. As a post-processing step, the QBS lifetimes have been
evaluated using the PML formalism. Based on an accurate
computation of the QBS lifetimes, the tunneling current can
be calculated according to

J2D =
kBTq

πh̄2

∑

i,ν

gνm‖

τν(Eν,i(mq))
ln

(

1 + exp

(

EF − Eν,i

kBT

))

where gν denotes the valley degeneracy, m‖ the parallel
mass, and mq the quantization masses (g = 2: m‖ = mt,
mq = ml and g = 4: m‖ =

√
mlmt, mq = mt), and τν(Eν,i)

is the lifetime of the quasi-bound state Eν,i. For [100] silicon
ml = 0.916 * m0 and mt = 0.196 * m0 where m0 is the
mass of a free electron as pointed out in [9]. Fig. 5 shows
the investigated MOS structure and some of the QBS wave
functions considering the transversal mass.
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Figure 5: Some QBS in a MOS capacitor (n+-insulator-p+)
with a doping of NA = 1 × 1017 cm−3, dielectric thickness
tdiel = 1.2 nm, and a gate bias of 1.5 V.

QBS Er [eV] N(Er) [1] τl [ps] JG [A cm−2]
1 0.14 6.3 × 10

−3
210 1.7 × 10

6

2 0.27 2.5 × 10
−5

160 8.6 × 10
3

3 0.38 3.4 × 10
−7

140 1.4 × 10
2

10 0.86 3.1 × 10
−15

56 3.2 × 10
−6

15 1.01 5.0 × 10
−18

93 3.1 × 10
−9

Table 2: The QBS of the MOS-capacitor for a gate bias
of 1.5V, lifetimes, values of the supply function, and their
contribution to the gate current density.

This procedure has been used to aquire the IV-characteristics
of several MOS structures. For an n-MOS device with a bulk
doping of NA=1 × 1017cm−3 some of the extracted quasi-
bound states are listed in Tab. 2 together with their contribution
to the total current density. The resulting gate current density
is shown as a function of the dielectric thickness, doping, and
the gate bias in Fig. 6.

IV. SUMMARY AND CONCLUSION

We presented a new method for the calculation of QBS
lifetimes. In contrast to the traditional approach which requires
a computationally very demanding scanning procedure, the
QBS lifetimes appear as the complex eigenvalues of a non-
Hermitian linear Hamiltonian. Since the equation which has
to be solved is linear, highly efficient algorithms are available.

To compare and to calibrate the method, the new PML
formalism and the established QTB method was applied to
an RTD structure and perfect agreement was obtained.

Moreover, the PML approach was used to evaluate QBS
in MOS inversion layers and the impact on direct tunneling
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Figure 6: The gate current density for different bulk doping
and dielectric thickness calculated from the QBS obtained by
the PML method.

through the dielectric layer which is for typical device param-
eters the dominant tunneling component. The PML formalism
represents an efficient and numerically stable method to de-
termine QBS. Furthermore, it is appropriate for integration
in a device simulator for the investigation of direct tunneling
phenomena.
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